Cell-penetrating peptide and antibiotic combination therapy: a potential alternative to combat drug resistance in methicillin-resistant Staphylococcus aureus
详细信息    查看全文
  • 作者:Harmandeep Kaur Randhawa ; Ankur Gautam…
  • 关键词:Methicillin ; resistant Staphylococcus aureus ; Drug resistance ; Drug delivery ; Cell ; penetrating peptides
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:100
  • 期:9
  • 页码:4073-4083
  • 全文大小:708 KB
  • 参考文献:Alves ID, Carré M, Montero MP, Castano S, Lecomte S, Marquant R, Lecorché P, Burlina F, Schatz C, Sagan S, Chassaing G, Braguer D, Lavielle S (2014) A proapoptotic peptide conjugated to penetratin selectively inhibits tumor cell growth. Biochim Biophys Acta - Biomembr 1838:2087–2098. doi:10.​1016/​j.​bbamem.​2014.​04.​025 CrossRef
    Clinical and Laboratory Standards Institute (CLSI). (2006) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically - 7th ed. Approved Standard, CLSI document M7-A7, Vol. 26. CLSI, Wayne, PA
    Courvalin P (2006) Vancomycin resistance in Gram-positive cocci. Clin Infect Dis 42(Suppl 1):S25–S34CrossRef PubMed
    Dartois V, Sanchez-Quesada J, Cabezas E, Chi E, Dubbelde C, Dunn C, Dunn C, Granja J, Gritzen C, Weinberger D, Ghadiri RM, Parr TR (2005) Systemic antibacterial activity of novel synthetic cyclic peptides. Antimicrob Agents Chemother 49:3302–3310. doi:10.​1128/​AAC.​49.​8.​3302 CrossRef PubMed PubMedCentral
    Farkhani MS, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F (2014) Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides 57:78–94. doi:10.​1016/​j.​peptides.​2014.​04.​015 CrossRef PubMed
    Franciolli M, Bille J, Glauser MR, Moreillon P (1991) β-lactam resistance mechanisms of methicillin-resistant Staphylococcus aureus. J Infect Dis 163:514–522CrossRef PubMed
    Gautam A, Sharma M, Vir P, Chaudhary K, Kapoor P, Kumar R, Nath SK, Raghava GPS (2015) Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides. Eur J Pharm Biopharm 89:93–106. doi:10.​1016/​j.​ejpb.​2014.​11.​020 CrossRef PubMed
    Gautam A, Singh H, Tyagi A, Chaudhary K, Kumar R, Kapoor P, Raghava GPS (2012) CPPsite: a curated database of cell penetrating peptides. Database 2012:1–7. doi:10.​1093/​database/​bas015 CrossRef
    Ghosh JK, Shaool D, Guillaud P, Ciceron L, Mazier D, Kustanovich I, Shai Y, Mor A (1997) Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic plasmodium falciparum and the underlying molecular basis. J Biol Chem 272:31609–31616. doi:10.​1074/​jbc.​272.​50.​31609 CrossRef PubMed
    Heiat M, Aghamollaei H, Moghaddam MM, Kooshki H (2014) Using CM11 peptide as a cell permeable agent for the improvement of conventional plasmid transformation methods in Escherichia coli and Bacillus subtilis. Minerva Biotechnologica 26:149–157
    Huang Y, Jiang Y, Wang H, Wang J, Shin MC, Byun Y, He H, Liang Y, Yang VC (2013) Curb challenges of the "trojan horse" approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv Drug Deliv Rev 65:1299–1315CrossRef PubMed PubMedCentral
    Isnansetyo A, Kamei Y (2003) MC21-A, a bactericidal antibiotic produced by a new marine bacterium, Pseudoalteromonas phenolica sp. nov. O-BC30T, against methicillin-resistant Staphylococcus aureus. Antimicrob Agents and Chemother 47:480–488. doi:10.​1128/​AAC.​42.​2.​480-488.​2003 CrossRef
    Kaatz G, Seo S (1993) Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents and Chemother 37:1086–1094. doi:10.​1128/​AAC.​37.​5.​1086 CrossRef
    Lehto T, Kurrikoff K, Langel U (2012) Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv 9:823–836. doi:10.​1517/​17425247.​2012.​689285 CrossRef PubMed
    Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman V, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459. doi:10.​1038/​nature14098 CrossRef PubMed
    Lowy FD (1998) Staphylococcus aureus infecions. N Engl J Med 339:520–532CrossRef PubMed
    Ma J, Xu J, Guan L, Hu T, Liu Q, Xiao J, Zhang Y (2014) Cell-penetrating peptides mediated protein cross-membrane delivery and its use in bacterial vector vaccine. Fish Shellfish Immunol 39:8–16. doi:10.​1016/​j.​fsi.​2014.​04.​003 CrossRef PubMed
    McKay GA, Beaulieu S, Arhin FF, Belley A, Sarmiento I, Parr TMG (2009) Time-kill kinetics of oritavancin and comparator agents against Streptococcus pyogenes. J Antimicrob Chemother 63:1191–1199. doi:10.​1093/​jac/​dkp126 CrossRef PubMed
    Nagappa AN, Kole PL, Pandi PV, Patil RT, Zeeyauddin K, Shanmukha I (2004) Transport studies through liquid membranes of ciprofloxacin and norfloxacin. Indian J Biochem Biophys 41:48–52PubMed
    Nobles CL, Green SI, Maresso AW (2013) A product of heme catabolism modulates bacterial function and survival. PLoS Pathog 9(7):e1003507. doi:10.​1371/​journal.​ppat.​1003507 CrossRef PubMed PubMedCentral
    Nuding S, Frasch T, Schaller M, Stange EF, Zabel LT (2014) Synergistic effects of antimicrobial peptides and antibiotics against Clostridium difficile. Antimicrob Agents Chemother 58:5719–5725. doi:10.​1128/​AAC.​02542-14 CrossRef PubMed PubMedCentral
    Oh D, Sun J, Nasrolahi Shirazi A, LaPlante KL, Rowley DC, Parang K (2014) Antibacterial activities of amphiphilic cyclic cell-penetrating peptides against multidrug resistant pathogens. Mol Pharm 11:3528–3536CrossRef PubMed PubMedCentral
    Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40. doi:10.​1038/​nrd2201 CrossRef PubMed
    Piątkowska E, Piątkowski J, Przondo-Mordarska A (2012) The strongest resistance of Staphylococcus aureus to erythromycin is caused by decreasing uptake of the antibiotic into the cells. Cell Mol Biol Lett 17:633–645. doi:10.​2478/​s11658-012-0034-3 PubMed
    Pujals S, Fernandez-Carneado J, Lopez-Iglesias C, Kogan MJ, Giralt E (2006) Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim Biophys Acta - Biomembr 1758:264–279. doi:10.​1016/​j.​bbamem.​2006.​01.​006 CrossRef
    Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590. doi:10.​1074/​jbc.​M209548200 CrossRef PubMed
    Roy SK, Kumari N, Pahwa S, Agrahari UC, Bhutani KK, Jachak SM, Nandanwar H (2013) NorA efflux pump inhibitory activity of coumarins from mesua ferrea. Fitoterapia 90:140–150. doi:10.​1016/​j.​fitote.​2013.​07.​015 CrossRef PubMed
    Snyder EL, Dowdy SF (2004) Cell penetrating peptides in drug delivery. Pharm Res 21:389–393CrossRef PubMed
    Sparr C, Purkayastha N, Kolesinska B, Gengenbacher M, Amulic B, Matuschewski K, Seebach D, Kamena F (2013) Improved efficacy of fosmidomycin against plasmodium and mycobacterium species by combination with the cell-penetrating peptide octaarginine. Antimicrob Agents Chemother 57:4689–4698. doi:10.​1128/​AAC.​00427-13 CrossRef PubMed PubMedCentral
    Vaara M, Nurminen M (1999) Outer membrane permeability barrier in Escherichia coli mutants that are defective in the late acyltransferases of lipid a biosynthesis. Antimicrob Agents Chemother 43:1459–1462PubMed PubMedCentral
    Vasconcelos L, Parn K, Langel U (2013) Therapeutic potential of cell-penetrating peptides. Ther Deliv 4:573–591. doi:10.​4155/​tde.​13.​22 CrossRef PubMed
    Vives E, Schmidt J, Pelegrin A (2008) Cell-penetrating and cell-targeting peptides in drug delivery. Biochim biophys acta 1786:126–138. doi:10.​1016/​j.​bbcan.​2008.​03.​001 PubMed
    Zasloff M (2002) Antimicrobial peptides of multicellular organism. Nature 415:389–395CrossRef PubMed
  • 作者单位:Harmandeep Kaur Randhawa (1)
    Ankur Gautam (2)
    Minakshi Sharma (2)
    Rakesh Bhatia (3)
    Grish C. Varshney (3)
    Gajendra Pal Singh Raghava (2)
    Hemraj Nandanwar (1)

    1. Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
    2. Bioinformatic Centre, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
    3. Cell Biology and Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
The diverse pattern of resistance by methicillin-resistant Staphylococcus aureus (MRSA) is the major obstacle in the treatment of its infections. The key reason of resistance is the poor membrane permeability of drug molecules. Over the last decade, cell-penetrating peptides (CPPs) have emerged as efficient drug delivery vehicles and have been exploited to improve the intracellular delivery of numerous therapeutic molecules in preclinical studies. Therefore, to overcome the drug resistance, we have investigated for the first time the effects of two CPPs (P3 and P8) in combination with four antibiotics (viz. oxacillin, erythromycin, norfloxacin, and vancomycin) against MRSA strains. We found that both CPPs internalized into the MRSA efficiently at very low concentration (<10 μM) which was non-toxic to bacteria as well as mammalian cells and showed no significant hemolytic activity. However, the combinations of CPPs (≤10 μM) and antibiotics showed high toxicity against MRSA as compared to antibiotics alone. The significant finding is that P3 and P8 could lower the MICs against oxacillin, norfloxacin, and vancomycin to susceptible levels (generally <1 μg/mL) for almost all five clinical isolates. Further, the bacterial cell death was confirmed by scanning electron microscopy as well as propidium iodide uptake assay. Simultaneously, time-kill kinetics revealed the increased uptake of antibiotics. In summary, CPPs assist to restore the effectiveness of antibiotics at much lower concentration, eliminate the antibiotic toxicity, and represent the CPP-antibiotic combination therapy as a potential novel weapon to combat MRSA infections.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700