Antifungal performance of extracellular chitinases and culture supernatants of Streptomyces galilaeus CFFSUR-B12 against Mycosphaerella fijiensis Morelet
详细信息    查看全文
  • 作者:Benjamín Moreno Castillo ; Michael F. Dunn…
  • 关键词:Streptomyces galilaeus ; Chitinases ; Culture supernatant ; Mycosphaerella fijiensis
  • 刊名:World Journal of Microbiology & Biotechnology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:32
  • 期:3
  • 全文大小:1,345 KB
  • 参考文献:Akutsu K, Hirata A, Yamamoto M et al (1993) Growth inhibition of Botrytis spp. by Serratia marcescens B2 isolated from tomato phylloplane. Ann Phytopath Soc Jpn 59:18–25CrossRef
    Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635CrossRef
    Bayoumi AE, Ordoñez C, Pérez Y et al (2002) Citotoxicidad del fungicida mancozeb en cultivos de CHO-K1. Revista de Toxicología 19:29–34. www.​redaly.​org/​articulo.​oa?​id=​91919103 . ISSN 0212-7113
    Bentley SD, Chater KF, Cerdeno-Tarraga A-M et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147CrossRef
    Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28CrossRef
    Blakeman JP, Fokkema NJ (1982) Potential for biological control of plant diseases on the phylloplane. Annu Rev Phytopathol 20:167–190CrossRef
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRef
    Broadway RM, Williams DL, Kain WC et al (1995) Partial characterization of chitinolytic enzymes from Streptomyces albidoflavus. Lett Appl Microbiol 20:271–276CrossRef
    Brurberg MB, Nes IF, Eijsink VGH (1996) Comparative studies of chitinases A and B from Serratia marcescens. Microbiology 142:1581–1589CrossRef
    Brzezinska MS, Jankiewicz U, Burkowska A (2013) Purification and characterization of Streptomyces albidoflavus antifungal components. Appl Biochem Microbiol 49:451–457CrossRef
    Brzezinska MS, Jankiewicz U, Burkowska A, Walczak M (2014) Chitinolytic microorganisms and their possible application in environmental protection. Curr Microbiol 68:71–81CrossRef
    Calviello G, Piccioni E, Boninsegna A et al (2006) DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: involvement of the oxidative mechanism. Toxicol Appl Pharmacol 211:87–96CrossRef
    Ceballos I, Mosquera S, Angulo M et al (2012) Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microb Ecol 64:641–653CrossRef
    Chater KF (2006) Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc B Biol Sci 361:761–768CrossRef
    Chater KF, Biró S, Lee KJ et al (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198CrossRef
    Churchill ACL (2011) Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Mol Plant Pathol 12:307–328CrossRef
    Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul
    da Sobrinho ISJ, Bataus LAM, Maitan VR, Ulhoa CJ (2005) Purification and Properties of an N-acetylglucosaminidase from Streptomyces cerradoensis. Biotechnol Lett 27:1273–1276CrossRef
    Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782CrossRef
    Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 161:345–360CrossRef
    El-Sayed E-SA, Ezzat SM, Ghaly MF et al (2000) Purification and characterization of two chitinases from Streptomyces albovinaceus S-22. World J Microbiol Biotechnol 16:87–89CrossRef
    El-Tarabily KA, Soliman MH, Nassar AH et al (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49:573–583CrossRef
    Gal SW, Choi JY, Kim CY et al (1998) Cloning of the 52-kDa chitinase gene from Serratia marcescens KCTC2172 and its proteolytic cleavage into an active 35-kDa enzyme. FEMS Microbiol Lett 160:151–158CrossRef
    Gander JE (1984) Gel protein stains: glycoproteins. Methods Enzymol 104:447–451CrossRef
    Garfin DE (1990) One-dimensional gel electrophoresis. Methods Enzymol 182:425–441CrossRef
    Garibay-Cerdenares O, Hernández-Ramírez V, Osorio-Trujillo J et al (2014) Proteomic identification of fucosylated haptoglobin alpha isoforms in ascitic fluids and its localization in ovarian carcinoma tissues from Mexican patients. J Ovarian Res 7:27CrossRef
    Geissen V, Ramos FQ, Bastidas-Bastidas PDJ et al (2010) Soil and water pollution in a banana production region in tropical Mexico. Bull Environ Contam Toxicol 85:407–413CrossRef
    Gohel V, Singh A, Vimal M et al (2006) Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr J Biotechnol 52:54–72. www.​academicjournals​.​org/​AJB . ISSN 1684-5315
    Gómez Ramírez M, Rojas Avelizapa LI, Rojas Avelizapa NG, Cruz Camarillo R (2004) Colloidal chitin stained with Remazol Brilliant Blue R®, a useful substrate to select chitinolytic microorganisms and to evaluate chitinases. J Microbiol Methods 56:213–219CrossRef
    Gutiérrez-Román MI, Dunn MF, Tinoco-Valencia R et al (2014) Potentiation of the synergistic activities of chitinases ChiA, ChiB and ChiC from Serratia marcescens CFFSUR-B2 by chitobiase (Chb) and chitin binding protein (CBP). World J Microbiol Biotechnol 30:33–42CrossRef
    Haggag WM, Abdallh EG (2012) Purification and characterization of chitinase produced by endophytic Sptomyces hygroscopicus against some phytopathogens. J Microbiol Res 2:145–151CrossRef
    Henriques W, Jeffers RD, Lacher TE, Kendall RJ (1997) Agrochemical use on banana plantations in Latin America: perspectives on ecological risk. Environ Toxicol Chem 16:91–99CrossRef
    Herrera-Estrella A, Chet I (1999) Chitinases in biological control. EXS 87:171–184
    Hoang K-C, Lai T-H, Lin C-S et al (2011) The chitinolytic activities of Streptomyces sp. TH-11. Int J Mol Sci 12:56–65CrossRef
    Huang X, Yong X, Zhang R et al (2013) The supernatant of Bacillus pumilus SQR-N43 has antifungal activity towards Rhizoctonia solani. J Basic Microbiol 53:657–663CrossRef
    Jacome LH, Schuh W, Stevenson RE (1991) Effect of temperature and relative humidity on germination and germ tube development of Mycosphaerella fijiensis var. difformis. Phytopathology 81:1480–1485CrossRef
    Joo G-J (2005) Purification and characterization of an extracellular chitinase from the antifungal biocontrol agent Streptomyces halstedii. Biotechnol Lett 27:1483–1486CrossRef
    Kämpfer P (2012) Family I. Streptomycetaceae. In: Goodfellow M, Kämpfer P, Busse H-J et al (eds) Bergey’s Manual® of systematic bacteriology. Springer, New York, pp 1446–1777
    Kawase T, Yokokawa S, Saito A et al (2006) Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci Biotechnol Biochem 70:988–998CrossRef
    Kim KJ, Yang YJ, Kim JG (2003) Purification and characterization of chitinases from Streptomyces sp. M-20. J Biochem Mol Biol 36:185–189CrossRef
    Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290CrossRef
    Liau CY, Lin C-S (2008) A modified Coomassie Brilliant Blue G-250 staining method for the detection of chitinase activity and molecular weight after polyacrylamide gel electrophoresis. J Biosci Bioeng 106:111–113CrossRef
    Liu C-L, Shen C-R, Hsu F-F et al (2009) Isolation and identification of two novel SDS-resistant secreted chitinases from Aeromonas schubertii. Biotechnol Prog 25:124–131CrossRef
    Macagnan D, Romeiro R, de Souza J, Pomella AV (2006) Isolation of actinomycetes and endospore-forming bacteria from the cacao pod surface and their antagonistic activity against the witches’ broom and black pod pathogens. Phytoparasitica 34:122–132CrossRef
    Macagnan D, da Romeiro RS, Pomella AWV, deSouza JT (2008) Production of lytic enzymes and siderophores, and inhibition of germination of basidiospores of Moniliophthora (ex Crinipellis) perniciosa by phylloplane actinomycetes. Biol Control 47:309–314CrossRef
    Marín DH, Romero RA, Guzmán M, Sutton TB (2003) Black Sigatoka: an increasing threat to banana cultivation. Plant Dis 87:208–222CrossRef
    Mehrotra NK, Kumar S, Shukla Y (1987) Tumour initiating activity of mancozeb—a carbamate fungicide in mouse skin. Cancer Lett 36:283–287CrossRef
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRef
    Mohamed B, Benali S (2010) The talc formulation of Streptomyces antagonist against Mycosphaerella foot rot in pea (Pisum sativum L.) seedlings. Arch Phytopathol Plant Prot 43:438–445CrossRef
    Mukherjee G, Sen SK (2006) Purification, characterization, and antifungal activity of chitinase from Streptomyces venezuelae P10. Curr Microbiol 53:265–269CrossRef
    Muzzarelli RA (1999) Native, industrial and fossil chitins. EXS 87:1–6
    Nagpure A, Gupta RK (2013) Purification and characterization of an extracellular chitinase from antagonistic Streptomyces violaceusniger. J Basic Microbiol 53:429–439CrossRef
    Nagpure A, Choudhary B, Gupta RK (2014a) Chitinases: in agriculture and human healthcare. Crit Rev Biotechnol 34:215–232CrossRef
    Nagpure A, Choudhary B, Gupta RK (2014b) Mycolytic enzymes produced by Streptomyces violaceusniger and their role in antagonism towards wood-rotting fungi. J Basic Microbiol 54:397–407CrossRef
    Narayana KJP, Vijayalakshmi M (2009) Chitinase production by Streptomyces sp. ANU 6277. Braz J Microbiol 40:725–733CrossRef
    Ohno T, Armand S, Hata T et al (1996) A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J Bacteriol 178:5065–5070
    Orozco-Santos M, Orozco-Romero J, Pérez-Zamora O et al (2008) Prácticas culturales para el manejo de la sigatoka negra en bananos y plátanos. Trop Plant Pathol 33:189–196CrossRef
    Park SH, Lee JH, Lee HK (2000) Purification and characterization of chitinase from a marine bacterium, Vibrio sp. 98CJ11027. J Microbiol 38:224–229
    Pérez L, Hernández A, Hernández L, Pérez M (2002) Effect of trifloxystrobin and azoxystrobin on the control of black Sigatoka (Mycosphaerella fijiensis Morelet) on banana and plantain. Crop Prot 21:17–23CrossRef
    Pérez-Vázquez V, Guzmán-Flores J, Mares-Álvarez D et al (2014) Differential proteomic analysis of the pancreas of diabetic db/db mice reveals the proteins involved in the development of complications of diabetes mellitus. Int J Mol Sci 15:9579–9593CrossRef
    Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4:330–337CrossRef
    Procópio RE, da Silva IR, Martins MK et al (2012) Antibiotics produced by Streptomyces. Braz J Infect Dis 16:466–471CrossRef
    Purushotham P, Podile AR (2012) Synthesis of long-chain chitooligosaccharides by a hypertransglycosylating processive endochitinase of Serratia proteamaculans 568. J Bacteriol 194:4260–4271CrossRef
    Purushotham P, Arun PVPS, Prakash JSS, Podile AR (2012) Chitin binding proteins act synergistically with chitinases in Serratia proteamaculans 568. PLoS ONE 7:e36714. doi:10.​1371/​journal.​pone.​0036714 CrossRef
    Qin S, Xing K, Jiang J-H et al (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473CrossRef
    Quecine MC, Araujo WL, Marcon J et al (2008) Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47:486–491CrossRef
    Rabeeth M, Anitha A, Srikanth G (2011) Purification of an antifungal endochitinase from a potential biocontrol agent Streptomyces griseus. Pak J Biol Sci 14:788–797CrossRef
    Regev A, Keller M, Strizhov N et al (1996) Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62:3581–3586
    Reguera G, Leschine S (2003) Biochemical and genetic characterization of ChiA, the major enzyme component for the solubilization of chitin by Cellulomonas uda. Arch Microbiol 180:434–443CrossRef
    Romaguera A, Menge U, Breves R, Diekmann H (1992) Chitinases of Streptomyces olivaceoviridis and significance of processing for multiplicity. J Bacteriol 174:3450–3454
    Ruiz-Sánchez A, Cruz-Camarillo R, Salcedo-Hernández R, Barboza-Corona JE (2005) Chitinases from Serratia marcescens Nima. Biotechnol Lett 27:649–653CrossRef
    Schrempf H (2001) Recognition and degradation of chitin by Streptomycetes. Antonie Van Leeuwenhoek 79:285–289CrossRef
    Shimizu M (2011) Endophytic Actinomycetes: biocontrol agents and growth promoters. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 201–220CrossRef
    Shylaja M, Seshadri HS (1989) Glycoproteins: an overview. Biochem Educ 17:170–178CrossRef
    Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99CrossRef
    Someya N, Nakajima M, Hirayae K et al (2001) Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by biocontrol bacterium, Serratia marcescens strain B2 against gray mold pathogen, Botrytis cinerea. J Gen Plant Pathol 67:312–317CrossRef
    Suzuki K, Suzuki M, Taiyoji M et al (1998) Chitin binding protein (CBP21) in the culture supernatant of Serratia marcescens 2170. Biosci Biotechnol Biochem 62:128–135CrossRef
    Suzuki K, Sugawara N, Suzuki M et al (2002) Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci Biotechnol Biochem 66:1075–1083CrossRef
    Trejo-Estrada SR, Paszczynski A, Crawford DL (1998) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J Ind Microbiol Biotechnol 21:81–90CrossRef
    Trudel J, Asselin A (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem 178:362–366CrossRef
    Tsujibo H, Minoura K, Miyamoto K et al (1993) Purification and properties of a thermostable chitinase from Streptomyces thermoviolaceus OPC-520. Appl Environ Microbiol 59:620–622
    Tu S, Qiu X, Cao L et al (2010) Expression and characterization of the chitinases from Serratia marcescens GEI strain for the control of Varroa destructor, a honey bee parasite. J Invertebr Pathol 104:75–82CrossRef
    Watanabe T, Kimura K, Sumiya T et al (1997) Genetic analysis of the chitinase system of Serratia marcescens 2170. J Bacteriol 179:7111–7117
    Watanabe T, Kanai R, Kawase T et al (1999) Family 19 chitinases of Streptomyces species: characterization and distribution. Microbiology 145:3353–3363CrossRef
    Watve M, Tickoo R, Jog M, Bhole B (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390CrossRef
    Williams ST, Robinson CS (1981) The role of Streptomycetes in decomposition of chitin in acidic soils. J Gen Microbiol 127:55–63
    Zaburannyi N, Rabyk M, Ostash B et al (2014) Insights into naturally minimised Streptomyces albus J1074 genome. BMC Genom. doi:10.​1186/​1471-2164-15-97
    Zhao J, Xue Q, Niu G et al (2013) Extracellular enzyme production and fungal mycelia degradation of antagonistic Streptomyces induced by fungal mycelia preparation of cucurbit plant pathogens. Ann Microbiol 63:809–812CrossRef
  • 作者单位:Benjamín Moreno Castillo (1)
    Michael F. Dunn (2)
    Karina Guillén Navarro (1)
    Francisco Holguín Meléndez (1)
    Magdalena Hernández Ortiz (2)
    Sergio Encarnación Guevara (2)
    Graciela Huerta Palacios (1)

    1. El Colegio de la Frontera Sur (ECOSUR), Carr. Antiguo Aeropuerto km. 2.5, Apartado Postal 36, 30700, Tapachula, Chiapas, Mexico
    2. Centro de Ciencias Genómicas, Universidad Autónoma de México (UNAM), Campus Morelos, Av. Universidad s/n Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Applied Microbiology
    Biotechnology
    Biochemistry
    Environmental Biotechnology
    Microbiology
  • 出版者:Springer Netherlands
  • ISSN:1573-0972
文摘
The tropical and mycoparasite strain Streptomyces galilaeus CFFSUR-B12 was evaluated as an antagonist of Mycosphaerella fijiensis Morelet, causal agent of the Black Sigatoka Disease (BSD) of banana. On zymograms of CFFSUR-B12 culture supernatants, we detected four chitinases of approximately 32 kDa (Chi32), 20 kDa (Chi20), and two with masses well over 170 kDa (ChiU) that showed little migration during denaturing electrophoresis at different concentrations of polyacrylamide. The thymol-sulphuric acid assay showed that the ChiU were glycosylated chitinases. Moreover, matrix assisted laser desorption ionization time-of-flight MS analysis revealed that the ChiU are the same protein and identical to a family 18 chitinase from Streptomyces sp. S4 (gi|498328075). Chi32 was similar to an extracellular protein from Streptomyces albus J1074 (gi|478687481) and Chi20 was non-significantly similar to chitinases from five different strains of Streptomyces (P > 0.05). Subsequently, Chi32 and Chi20 were partially purified by anion exchange and hydrophobic interaction chromatography and tested against M. fijiensis. Chitinases failed to inhibit ascospore germination, but inhibited up to 35 and 62 % of germ tube elongation and mycelial growth, respectively. We found that crude culture supernatant and living cells of S. galilaeus CFFSUR-B12 were the most effective in inhibiting M. fijiensis and are potential biocontrol agents of BSD. Keywords Streptomyces galilaeus Chitinases Culture supernatant Mycosphaerella fijiensis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700