Microfluidic Plasmonic Biosensor for Breast Cancer Antigen Detection
详细信息    查看全文
  • 作者:Johny Paulo Monteiro ; Jean Halison de Oliveira ; Eduardo Radovanovic…
  • 关键词:Nanohole arrays ; Surface plasmon ; SPR ; HER2 antigen ; Tumor marker ; Breast cancer
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 页码:45-51
  • 全文大小:824 KB
  • 参考文献:1.Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669. doi:10.​1038/​35570 CrossRef
    2.Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66:163–182. doi:10.​1103/​PhysRev.​66.​163 CrossRef
    3.Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev (Washington, DC, U S) 108:462–493. doi:10.​1021/​cr068107d CrossRef
    4.De Leebeeck A, Kumar LKS, De Lange V, Sinton D, Gordon R, Brolo AG (2007) On-chip surface-based detection with nanohole arrays. Anal Chem 79:4094–4100. doi:10.​1021/​ac070001a CrossRef
    5.Gordon R, Sinton D, Kavanagh KL, Brolo AG (2008) A new generation of sensors based on extraordinary optical transmission. Acc Chem Res 41:1049–1057. doi:10.​1021/​ar800074d CrossRef
    6.Monteiro JP, Carneiro LB, Rahman MM, Brolo AG, Santos MJL, Ferreira J, Girotto EM (2013) Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays. Sensors Actuators B 178:366–370. doi:10.​1016/​j.​snb.​2012.​12.​090 CrossRef
    7.Yanga JC, Ji J, Hoglea JM, Larson DN (2009) Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation. Biosens Bioelectron 24:2334–2338. doi:10.​1016/​j.​bios.​2008.​12.​011 CrossRef
    8.Tellez GAC, Ahmed A, Gordon R (2012) Optimizing the resolution of nanohole arrays in metal films for refractive-index sensing. Appl Phys A Mater Sci Process 109:775–780. doi:10.​1007/​s00339-012-7405-5 CrossRef
    9.Kretschmann E, Raether HZ (1968) Radiative decay of nonradiative surface plasmons excited by light Z. Naturforsch 23A 23:2135–2136. doi: citeulike-article-id:3901347
    10.Patel PDJ (2006) Overview of affinity biosensors in food analysis. J AOAC Int 89:805
    11.Lazcka O, Campo FJD, Munoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217. doi:10.​1016/​j.​bios.​2006.​06.​036 CrossRef
    12.Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R (2003) Advances in biosensors for detection of pathogens in food and water. Enzym Microb Technol 32:3–13. doi:10.​1016/​S0141-0229(02)00232-6 CrossRef
    13.Mello LD, Kubota LT (2002) Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 77:237–256. doi:10.​1016/​S0308-8146(02)00104-8 CrossRef
    14.Baeumner AJ (2003) Biosensors for environmental pollutants and food contaminants. Anal Bioanal Chem 377:434–445. doi:10.​1007/​s00216-003-2158-9 CrossRef
    15.Farre M, Martinez E, Ramon J, Navarro A, Radjenovic J, Mauriz E, Lechuga L, Marco MP, Barcelo D (2007) Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor. Anal Bioanal Chem 388:207–214. doi:10.​1007/​s00216-007-1214-2 CrossRef
    16.Shankaran DR, Matsumoto K, Toko K, Miura N (2006) Performance evaluation and comparison of four SPR immunoassays for rapid and label-free detection of TNT. Electrochemistry (Tokyo, Jpn) 74:141–144. doi:10.​5796/​electrochemistry​.​74.​141 CrossRef
    17.Kim SJ, Gobi KV, Harada R, Shankaran DR, Miura N (2006) Miniaturized portable surface plasmon resonance immunosensor applicable for onsite detection of low-molecular-weight analytes. Sensors Actuators B 115:349–256. doi:10.​1016/​j.​snb.​2005.​09.​025 CrossRef
    18.Ock K, Jang G, Roh Y, Kim S, Kim J, Koh K (2001) Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface. Microchem J 70:301–305. doi:10.​1016/​S0026-265X(01)00133-3 CrossRef
    19.Soh N, Watanabe T, Asano Y, Imato T (2003) Indirect competitive immunoassay for bisphenol A based on a surface plasmon resonance sensor. Sens and Materials 15:423–438
    20.Soh N, Tokuda T, Watanabe T, Mishima K, Imato T, Masadome T, Asano Y, Okutani S, Niwa O, Brown S (2003) A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide. Talanta 60:733–745. doi:10.​1016/​S0039-9140(03)00139-5 CrossRef
    21.Shimomura M, Nomura Y, Zhang W, Sakino M, Lee KH, Ikebukuro K, Karube I (2001) Simple and rapid detection method using surface plasmon resonance for dioxins, polychlorinated biphenylx and atrazine. Anal Chim Acta 434:223–230. doi:10.​1016/​S0003-2670(01)00809-1 CrossRef
    22.Gobi KV, Iwasaka H, Miura N (2007) Self-assembled PEG monolayer based SPR immunosensor for label-free detection of insulin. Biosens Bioelectron 22:1382–1389. doi:10.​1016/​j.​bios.​2006.​06.​012 CrossRef
    23.Dillon PP, Daly SJ, Manning BM, O’Kennedy R (2003) Immunoassay for the determination of morphine-3-glucuronide using a surface plasmon resonance-based biosensor. Biosens Bioelectron 18:217–227. doi:10.​1016/​S0956-5663(02)00182-3 CrossRef
    24.Fitzpatrick B, O’Kennedy R (2004) The development and application of a surface plasmon resonance-based inhibition immunoassay for the determination of warfarin in plasma ultrafiltrate. J Immunol Methods 291:11–25. doi:10.​1016/​j.​jim.​2004.​03.​015 CrossRef
    25.Ladd J, Boozer C, Yu Q, Chen S, Homola J, Jiang S (2004) DNA-directed protein immobilization on mixed self-assembled monolayers via a streptavidin bridge. Langmuir 20:8090–8095. doi:10.​1021/​la049867r CrossRef
    26.Chung JW, Bernhardt R, Pyun JC (2006) Sequential analysis of multiple analytes using a surface plasmon resonance (SPR) biosensor. J Immunol Methods 311:178–188. doi:10.​1016/​j.​jim.​2006.​02.​003 CrossRef
    27.Miyashita M, Shimada T, Miyagawa H, Akamatsu M (2005) Surface plasmon resonance-based immunoassay for 17beta-estradiol and its application to the measurement of estrogen receptor-binding activity. Anal Bioanal Chem 381:667–673. doi:10.​1007/​s00216-004-2952-z CrossRef
    28.Cao C, Kim JP, Kim BW, Chae H, Yoon HC, Yang SS, Sim SJ (2006) A strategy for sensitivity and specificity enhancements in prostate specific antigen-alpha1-antichymotrypsin detection based on surface plasmon resonance. Biosens Bioelectron 21:2106–2113. doi:10.​1016/​j.​bios.​2005.​10.​014 CrossRef
    29.Li Y, Lee HJ, Corn RM (2007) Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem (Washington, DC, U S) 79:1082–1088. doi:10.​1021/​ac061849m CrossRef
    30.Besselink GA, Kooyman RP, van Os PJ, Engbers GH, Schasfoort RB (2004) Signal amplification on planar and gel-type sensor surfaces in surface plasmon resonance-based detection of prostate-specific antigen. Anal Biochem 333:165–173. doi:10.​1016/​j.​ab.​2004.​05.​009 CrossRef
    31.Wu LP, Li YF, Huang CZ, Zhang Q (2006) Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles. Anal Chem 78:5570–5577. doi:10.​1021/​ac0603577 CrossRef
    32.Chung JW, Bernhardt R, Pyun JC (2006) Additive assay of cancer marker CA 19-9 by SPR biosensor. Sensors Actuators B 118:28–32. doi:10.​1016/​j.​snb.​2006.​04.​015 CrossRef
    33.Yang CY, Brooks E, Li Y, Denny P, Ho CM, Qi FX, Shi WY, Wolinsky L, Wu B, Wong DTW, Montemagno CD (2005) Detection of picomolar levels of interleukin-8 in human saliva by SPR. Lab Chip 5:1017–1023. doi:10.​1039/​b504737d CrossRef
    34.Tang DP, Yuan R, Chai YQ (2006) Novel immunoassay for carcinoembryonic antigen based on protein A-conjugated immunosensor chip by surface plasmon resonance and cyclic voltammetry. Bioprocess Biosyst Eng 28:315–321. doi:10.​1007/​s00449-005-0036-x CrossRef
    35.Monfregola L, Vitale RM, Amodeo P, De Luca S (2009) A SPR strategy for high-throughput ligand screenings based on synthetic peptides mimicking a selected subdomain of the target protein: a proof of concept on HER2 receptor. Bioorg Med Chem 17:7015–7020. doi:10.​1016/​j.​bmc.​2009.​08.​004 CrossRef
    36.Hunta HK, Armani AM (2010) Label-free biological and chemical sensors. Nanoscale 2:1544–1559. doi:10.​1039/​c0nr00201a CrossRef
    37.Escobedo C, Brolo AG, Gordon R, Sinton D (2010) Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 82:10015–10020. doi:10.​1021/​ac101654f CrossRef
    38.Ji J, O’Connell JG, Carter DJD, Larson DN (2008) High-throughput nanohole array based system to monitor multiple binding events in real time. Anal Chem 80:2491–2498. doi:10.​1021/​ac7023206 CrossRef
    39.Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81:4308–4311. doi:10.​1021/​ac900221y CrossRef
    40.Escobedo C, Chou Y-W, Rahman M, Duan X, Gordon R, Sinton D, Brolo AG, Ferreira J (2013) Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. Analyst 138:1450–1458. doi:10.​1039/​c3an36616b CrossRef
    41.Basil CF, Zhao YD, Zavaglia K, Jin P, Panelli MC, Voiculescu S, Mandruzzato S, Lee HM, Seliger B, Freedman RS, Taylor PR, Hu N, Zanovello P, Marincola FM, Wang E (2006) Common cancer biomarkers. Cancer Res 66:2953–2961. doi:10.​1158/​0008-5472.​CAN-05-3433 CrossRef
    42.Esteva FJ, Cheli CD, Fritsche H, Fornier M, Slamon D, Thiel RP, Luftner D, Ghani F (2005) Clinical utility of serum HER2/neu in monitoring and prediction of progression-free survival in metastatic breast cancer patients treated with trastuzumab-based therapies. Breast Cancer Res 7:R436–R443. doi:10.​1186/​bcr1020 CrossRef
    43.Coussens L, Yang-Feng TL, Lioa YC, Chen E, Gray A, McGrath J, Seeburg PH, Libermann TA, Schlessinger J, Francke U, Levinson A, Ullrich A (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230:1132–1139. doi:10.​1126/​science.​2999974 CrossRef
    44.Schecter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI, Weinberg AR (1984) The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 312:513–516. doi:10.​1038/​312513a0 CrossRef
    45.Slamon DJ, Goldolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712. doi:10.​1126/​science.​2470152 CrossRef
    46.Gown AM (2008) Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol 21:S8–S15. doi:10.​1038/​modpathol.​2008.​34 CrossRef
    47.Freitas CS (2008) Estendendo o Conhecimento sobre a Família Her-Receptores para o Fator de Crescimento Epidérmico e seus ligantes às Malignidades Hematológicas. Revista Brasileira de Cancerologia 54:79–86
    48.Carneiro LB, Ferreira J, Santos MJL, Monteiro JP, Girotto EM (2011) A new approach to immobilize poly (vinyl alcohol) on poly (dimethylsiloxane) resulting in low protein adsorption. Appl Surf Sci 257:10514–10519. doi:10.​1016/​j.​apsusc.​2011.​07.​031 CrossRef
    49.Huang NP, Voros J, De Paul SM, Textor M, Spencer ND (2002) Biotin-derivatized poly (L-lysine)-g-poly (ethylene glycol): a novel polymeric interface for bioaffinity sensing. Langmuir 18:220–230. doi:10.​1021/​la010913m CrossRef
    50.Marie E, Dahlin AB, Tegenfeldt JO, Hook F (2007) Generic surface modification strategy for sensing applications based on AuSiO2 nanostructures. Biointerphases 2:49–55. doi:10.​1116/​1.​2717926 CrossRef
    51.Fei X, Guoliang Z, Marcus T, Wolfgang K (2006) Surface plasmon optical detection of beta-lactamase binding to different interfacial matrices combined with fiber optic absorbance spectroscopy for enzymatic activity assays. Biointerphases 1:73–81. doi:10.​1116/​1.​2219109 CrossRef
    52.Knoll W, Liley M, Piscevic D, Spinke J, Tarlov MJ (1997) Supramolecular architectures for the functionalization of solid surfaces. Adv Biophys 34:231–251. doi:10.​1016/​S0065-227X(97)89642-6 CrossRef
    53.Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B 54:3–15. doi:10.​1016/​S0925-4005(98)00321-9 CrossRef
    54.Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, CambridgeCrossRef
    55.Pang L, Hwang GM, Slutsky B, Fainman Y (2007) Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor. Appl Phys Lett 91:123112. doi:10.​1063/​1.​2789181 CrossRef
    56.Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81:4308–4311. doi:10.​1021/​ac900221y CrossRef
    57.Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, Lee H (2014) Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 32:490–498. doi:10.​1038/​nbt.​2886 CrossRef
    58.Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314. doi:10.​1016/​j.​physrep.​2004.​11.​001 CrossRef
    59.Meenakshi A, Kumar RS, Kumar NS (2002) ELISA for quantitation of serum C-erbB-2 oncoprotein in breast cancer patients. J Immunoassay Immunochem 23:293–305. doi:10.​1081/​IAS-120013028 CrossRef
  • 作者单位:Johny Paulo Monteiro (1) (3)
    Jean Halison de Oliveira (1)
    Eduardo Radovanovic (1)
    Alexandre Guimarães Brolo (2)
    Emerson Marcelo Girotto (1)

    1. Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringá, Av Colombo 5790, 87020-900, Maringá, PR, Brazil
    3. Department of Chemistry, Universidade Tecnológica Federal do Paraná - UTFPR, Marcílio Dias Street, 635, 86812-460, Apucarana, PR, Brazil
    2. Department of Chemistry, University of Victoria, P.O. Box 3065, V8W 3 V6, Victoria, British Columbia, Canada
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
Biosensors based on surface plasmon resonance (SPR), operating with the Kretschmann conventional arrangement, have been employed for biomolecular detection of tumor markers. However, the traditional SPR configuration presents some experimental inconveniences that are overcome by using plasmonic substrates based on nanohole arrays manufactured in metallic films. This SPR configuration exhibits the extraordinary optical transmission (EOT) phenomenon, which is explored in the monitoring of binding events that occur on the metal surface. In this work, we proposed a plasmon biosensor based on nanohole arrays built on gold film operating in collinear transmission mode by using spectral investigation for signal transduction. The SPR substrate was coupled to a microfluidic system and showed good sensitivity and linearity. A concentration of 30 ng mL−1 of human epidermal receptor protein-2 (HER2) antigen (associated with breast cancer) was detected using the integrated device; this showed its great potential to be used in tumor diagnosis. Keywords Nanohole arrays Surface plasmon SPR HER2 antigen Tumor marker Breast cancer

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700