Alkyl phenols, alkenyl cyclohexenones and other phytochemical constituents from Lannea rivae (chiov) Sacleux (Anacardiaceae) and their bioactivity
详细信息    查看全文
  • 作者:Dorothy A. Okoth ; Hoseah M. Akala ; Jacob D. Johnson…
  • 关键词:Lannea rivae ; Alkenyl phenols ; Alkenyl cyclohexenones ; Alkenyl cyclohexenols ; Cytotoxicity ; Antiplasmodial ; Antibacterial ; Antioxidant
  • 刊名:Medicinal Chemistry Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:25
  • 期:4
  • 页码:690-703
  • 全文大小:528 KB
  • 参考文献:Akala HM, Eyase FL, Cheruiyot AC, Omondi AA, Ogutu BR, Waters NC, Johnson JD, Polhemus ME, Schnabel DC, Walsh DS (2011) Antimalarial drug sensitivity profile of western Kenya Plasmodium falciparum field isolates determined by a SYBR Green I in vitro assay and molecular analysis. Am J Trop Med Hyg 85:34–41PubMedCentral CrossRef PubMed
    Akhtar MN, Lam KW, Abas F, Maulidiani F, Ahmad S, Shah SAA, Choudhary MI, Atta-ur-Rahman TI, Lajis NH (2011) New class of acetylcholinesterase inhibitors from the stem bark of Knema laurina and their structural insights. Bioorg Med Chem Lett 21:4097–4103CrossRef PubMed
    Alam B, Hossain S, Habib R, Rea J, Islam A (2012) Antioxidant and analgesic activities of Lannea coromandelica Linn. bark extract. Int J Pharm 8:224–233CrossRef
    Anderson JC, Headley C, Stapleton PD, Taylor PW (2005) Synthesis and antibacterial activity of hydrolytically stable (−)-epicatechin gallate analogues for the modulation of beta-lactam resistance in Staphylococcus aureus. Bioorg Med Chem Lett 15:2633–2635PubMedCentral CrossRef PubMed
    Anderson JC, McCarthy RA, Paulin S, Taylor PW (2011) Anti-staphylococcal activity and β-lactam resistance attenuating capacity of structural analogues of (−)-epicatechin gallate. Bioorg Med Chem Lett 21:6996–7000PubMedCentral CrossRef PubMed
    Braca A, Politi M, Sanogo R, Sanou H, Morelli I, Pizza C, de Tommasi N (2003) Chemical composition and antioxidant activity of phenolic compounds from wild and cultivated Sclerocarya birrea (Anacardiaceae) leaves. J Agric Food Chem 51:6689–6695CrossRef PubMed
    Caturla N, Vera-Samper E, Villalain J, Mateo CR, Micole V (2003) The relationship between the antioxidant and the antibacterial properties of galloylated catechins and the structure of phospholipid membranes. Free Radical Biol Med 34:648–662CrossRef
    Chaabia M, Beghidja N, Benayache S, Lobstein A (2008) Activity-guided isolation of antioxidant principles from Limoniastrum feei (Girard) Batt. Z Naturforsch C J Biosci 63:801–807
    Chaturvedula VSP, Schilling JK, Miller JS, Andriantsiferana R, Rasamison VE, Kingston GI (2004) New cytotoxic terpenoids from the wood of Vepris punctata from the Madagascar rainforest. J Nat Prod 67:895–898CrossRef PubMed
    Ciu Y, Oh YJ, Lim J, Youn M, Lee I, Pak HK, Park W, Jo W, Park S (2012) AFM study of differential inhibitory effects of green tea polyphenol (−)-epicatechin-3-gallate (EGGC) against Gram positive and Gram negative bacteria. Food Microbiol 29:80–87CrossRef
    Clarkson C, Maharaj VJ, Crouch NR, Grace WM, Pillay P, Matsabisa MG, Bhagwandin N, Smith PJ, Folb PI (2004) In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol 92:177–191CrossRef PubMed
    Croft KD (1998) The chemistry and biological effects of flavonoids and phenolic acids. Ann N Y Acad Sci 854:435–442CrossRef PubMed
    Cuendet M, Hostettmann K, Potterat O, Dyatmiko W (1997) Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helv Chim Acta 80:1144–1152CrossRef
    David JM, Chávez JP, Chai H-B, Pezzuto JM, Cordell GA (1998) Two new cytotoxic compounds from Tapirira guianensis. J Nat Prod 61:287–289CrossRef PubMed
    Davids D, Blouws T, Aboyade O, Gibson D, De Jong JT, Van’t Klooster C, Hughes G (2014) Traditional health practitioners’ perceptions, herbal treatment and management of HIV and related opportunistic infections. J Ethnobiol Ethnomed 10:77PubMedCentral CrossRef PubMed
    de Jesus Correia S, David JM, David JP, Chai H-B, Pezzuto JM, Cordell GA (2001) Alkyl phenols and derivatives from Tapirira obtusa. Phytochemistry 56:781–784CrossRef
    Deharo E, Bourdy G, Quenevo C, Munoz V, Ruiz G, Sauvain M (2001) A search for bioactive natural compounds in Bolivia through a multidisciplinary approach. Part V. Evaluation of the antimalarial activity of plants used by the Tacana Indians. J Ethnopharmacol 77:91–98CrossRef PubMed
    Deji-Agboola AM, Olajubu FA (2010) Antimicrobial activity of Lannea welwitschii stem bark against wound pathogens. Ethiopian Pharm J 28:110–116
    Desjardins RE, Canfield CJ, Haynes JD, Chulay JD (1979) Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 16:710–718PubMedCentral CrossRef PubMed
    D’Souza L, Wahidullah S, Prabha D (2010) Antibacterial phenolics from the mangrove Lumnitzera racemosa. Indian J Mar Sci 39:294–298
    Faizi S, Ali M, Saleem R, Irfanullah Bibi S (2001) Complete 1H and 13C NMR assignments of stigma-5-en-3-O-beta-glucoside and its acetyl derivative. Magn Reson Chem 39:399–405CrossRef
    Gachet MS, Kunert O, Kaiser M, Brun R, Zehl M, Keller W, Munoz RA, Bauer R, Schuehly W (2011) Antiparasitic compounds from Cupania cinerea with activities against Plasmodium falciparum and Trypanosoma brucei rhodesiense. J Nat Prod 74:559–566CrossRef PubMed
    Gathirwa JW, Rukunga GM, Njagi ENM, Omar SA, Guantai AN, Muthaura CN, Mwitari PG, Kimani CW, Kirira PG, Tolo FM, Ndunda TN, Ndiege IO (2007) In vitro anti-plasmodial and in vivo anti-malarial activity of some plants traditionally used for the treatment of malaria by the Meru community in Kenya. J Nat Med 61:261–268CrossRef
    Gathirwa JW, Rukunga GM, Njagi ENM, Omar SA, Mwitari PG, Guantai AN, Tolo FM, Kimani CW, Muthaura CN, Kirira PG, Ndunda TN, Amalemba G, Mungai GM, Ndiege IO (2008) The in vitro anti-plasmodial and in vivo anti-malarial efficacy of combinations of some medicinal plants used traditionally for treatment of malaria by the Meru community in Kenya. J Ethnopharmacol 115:223–231CrossRef PubMed
    Gathirwa JW, Rukunga GM, Mwitari PG, Mwikwabe NM, Kimani CW, Muthaura CN, Kiboi DM, Nyangacha RM, Omar SA (2011) Traditional herbal antimalarial therapy in Kilifi district, Kenya. J Ethnopharmacol 134:434–442CrossRef PubMed
    Gibbons S (2005) Plants as a source of bacterial resistance modulators and anti-infective agents. Phytochem Rev 4:63–78CrossRef
    Gibbons S, Moser E, Kaatz GW (2004) Catechin gallates inhibit multidrug resistance (MDR) in Staphylococcus aureus. Planta Med 70:1240–1242CrossRef PubMed
    Griep MA, Blood S, Larson MA, Koepsell SA, Hinrichs SH (2007) Myricetin inhibits Escherichia coli DnaB helicase but not primase. Bioorg Med Chem 15:7203–7208CrossRef PubMed
    Groweiss A, Cardellina JH, Pannell LK, Uyakul D, Kashman Y, Boyd MR (1997) Novel cytotoxic, alkylated hydroquinones from Lannea welwitschii. J Nat Prod 60:116–121CrossRef PubMed
    Guo Q, Zhao B, Shen S, Hou J, Hu J, Xin W (1999) ESR study on the structure–antioxidant activity relationship of tea catechins and their epimers. Biochim Biophys Acta 1427:13–23CrossRef PubMed
    Hamilton-Miller JMT, Shah S (2000) Activity of the tea component epicatechin gallate and analogues against methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 46:847–863CrossRef
    Islam MT, Ito T, Sakasai M, Tahara S (2002) Zoosporicidal activity of polyflavonoid tannin identified in Lannea coromandelica stem bark against phytopathogenic oomycete Aphanomyces cochlioides. J Agric Food Chem 50:6697–6703CrossRef PubMed
    Jayaraman P, Sakharkar MK, Lim CS, Tang TH, Sakharkar KR (2010) Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int J Biol Sci 6:556–568PubMedCentral CrossRef PubMed
    Johnson JD, Dennull RA, Gerena L, Lopez-Sanchez M, Roncal NE, Waters NC (2007) Assessment and continued validation of the malaria SYBR Green I-based fluorescence assay for use in malaria drug screening. Antimicrob Agents Chemother 51:1926–1933PubMedCentral CrossRef PubMed
    Kapche GDWF, Laatsch H, Fotso S, Kouam SF, Wafo P, Ngadjui BT, Abegaz BM (2007) Lanneanol: a new cytotoxic dihydroalkylcyclohexenol and phenolic compounds from Lannea nigritana (Sc. Ell.) Keay. Biochem Syst Ecol 35:539–543CrossRef
    Khachik F, Chang A-N (2009) Total synthesis of (3R,3’R,6’R)-Lutein and its stereoisomers. J Org Chem 74:3875–3885CrossRef PubMed
    Kokwaro JO (2009) Medicinal plants of east Africa. University of Nairobi Press, Nairobi
    Koné WM, Soro D, Dro B, Yao K, Kamanzi K (2011) Chemical composition, antioxidant, antimicrobial and acetylcholinesterase inhibitory properties of Lannea barteri (Anacardiaceae). Aust J Basic Appl Sci 5:1516–1523
    Kovganko NV, Kashkan ZN, Borisov EV, Batura EV (1999) C-13 NMR spectra of β-sitosterol derivatives with oxidized rings A and B. Chem Nat Compd 35:646–649CrossRef
    Kumawat RS, Mruthunjaya K, Gupta MK (2012) Preparation, characterization and antioxidant activities of gallic acid-phospholipid complex. Int J Res Pharm Sci 2:138–148
    Lee JI, Kong C-S, Jung ME, Hong JW, Lim SY, Seo Y (2011) Antioxidant activity of the Halophyte Limonium tetragonum and its major active components. Biotechnol Bioprocess Eng 16:992–999CrossRef
    Lehane AM, Saliba KJ (2008) Common dietary flavonoids inhibit the growth of the intra erythrocytic malaria parasite. BMC Res Notes 1:26PubMedCentral CrossRef PubMed
    Liu Y, Abreu PJM (2006) Long chain alkyl and alkenyl phenols from the roots of Ozoroa insignis. J Braz Chem Soc 17:527–532CrossRef
    Liu M, Matsuzaki S (1995) Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus (MRSA). Dokkyo J Med Sci 22:253–261
    Liu Z, Jiang W, Deng ZW, Lin WH (2010) Assignment of the absolute stereochemistry of an unusual diterpenoid from the mangrove plant Excoecaria agallocha L. J Chin Pharm Sci 19:387–392
    Liu Q, Wang Y-q, Xu P-r, Zhang H-m, Zhao Y-f, Lu Y-n (2011) Study on the antibacterial activity of catechins against the heterogeneous vancomycin resistant Staphylococcus. Zhongguo Kangshengsu Zazhi 36:557-S1
    Lomonaco D, Pinheiro Santiago GM, Ferreira YS, Campos Arriaga AM, Mazzetto SE, Mele G, Vasapollo G (2009) Study of technical CNSL and its main components as new green larvicides. Green Chem 11:31–33CrossRef
    Maiga A, Malterud KE, Diallo D, Paulsen BS (2006) Antioxidant and 15-lipoxygenase inhibitory activities of the Malian medicinal plants Diospyros abyssinica (Hiern) F. White (Ebenaceae), Lannea velutina A. Rich (Anacardiaceae) and Crossopteryx febrifuga (Aftel) Benth. (Rubiaceae). J Ethnopharmacol 104:132–137CrossRef PubMed
    Maiga A, Malterud KE, Mathisen GH, Paulsen RE, Thomas-Oates J, Bergstrom E, Reubsaet L, Diallo D, Paulsen BS (2007) Cell protective antioxidants from the root bark of Lannea velutina A. Rich., a Malian medicinal plant. J Med Plants Res 1:66–79
    Maregesi SM, Pieters L, Ngassapa OD, Apers S, Vingerhoets R, Cos P, van den Berghe DA, Vlietinck AJ (2008) Screening of some Tanzanian medicinal plants from Bunda district for antibacterial, antifungal and antiviral activities. J Ethnopharmacol 119:58–66CrossRef PubMed
    Maregesi S, van Miert S, Pannecouque C, Haddad MHF, Hermans N, Wright CW, Vlietinck AJ, Apers S, Pieters L (2010) Screening of Tanzanian Medicinal Plants against Plasmodium falciparum and Human Immunodeficiency Virus. Planta Med 76:195–201CrossRef PubMed
    Maundu PM, Ngugi GW, Kabuye CHS (1999) Traditional food plants of Kenya. National Museums of Kenya, Nairobi
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRef PubMed
    Muregi FW, Chhabra SC, Njagi ENM, Lang’at-Thoruwa CC, Njue WM, Orago ASS, Omar SA, Ndiege IO (2003) In vitro antiplasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiation effects. J Ethnopharmacol 84:235–239CrossRef PubMed
    Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y (1996) Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radical Biol Med 21:895–902CrossRef
    Okoth DA, Koorbanally NA (2015) Cardanols, long chain cyclohexenones and cyclohexenols from Lannea schimperi (Anacardiaceae). Nat Prod Commun 10(1):103–106PubMed
    Okoth DA, Chenia HY, Koorbanally NA (2013) Antibacterial and antioxidant activities of flavonoids from Lannea alata (Engl.) Engl. (Anacardiaceae). Phytochem Lett 6:476–481CrossRef
    Ouattara L, Koudou J, Karou DS, Giaco L, Capelli G, Simpore J, Fraziano M, Colizzi V, Traore AS (2011) In vitro anti Mycobacterium tuberculosis H37Rv activity of Lannea acida A. Rich from Burkina Faso. Pak J Biol Sci 14:47–52CrossRef PubMed
    Park KD, Park YS, Choo SJ, Sun WS, Kim SH, Jung DH, Kim JH (2004) Antimicrobial activity of 3-O-acyl-(-)-epicatechin and 3-O-acyl-(+)-catechin derivatives. Planta Med 70:272–276CrossRef PubMed
    Picerno P, Mencherini T, Della Loggia R, Meloni M, Sanogo R, Aquino RP (2006) An extract of Lannea microcarpa: composition activity and evaluation of cutaneous irritation in cell cultures and reconstituted human epidermis. J Pharm Pharmacol 58:981–988CrossRef PubMed
    Qin R, Xiao K, Li B, Jiang W, Peng W, Zheng J, Zhou H (2013) The combination of catechin and epicatechin gallate from Fructus Crataegi potentiates β-lactam antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo. Int J Mol Sci 14:1802–1821PubMedCentral CrossRef PubMed
    Queiroz EF, Kuhl C, Terreaux C, Mavi S, Hostettmann K (2003) New dihydroalkylhexenones from Lannea edulis. J Nat Prod 66:578–580CrossRef PubMed
    Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol Med 20:933–956CrossRef
    Roumy V, Fabre N, Portet B, Bourdy G, Acebey L, Vigor C, Valentin A, Moulis C (2009) Four anti-protozoal and anti-bacterial compounds from Tapirira guianensis. Phytochemistry 70:305–311CrossRef PubMed
    Rubinstein LV, Shoemaker RH, Paul KD, Simon RM, Tosini S, Skehan P, Scudiero DA, Monks A, Boyd MR (1990) Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst 82:1113–1118CrossRef PubMed
    Sakanaka S, Juneja LR, Taniguchi M (2000) Antimicrobial effects of green tea polyphenols on thermophillic spore-forming bacteria. J Biosci Bioeng 90:81–85CrossRef PubMed
    Sakurai N, Yaguchi Y, Inoue T (1987) Constituents of Myrica rubra. 2. Triterpenoids from Myrica rubra. Phytochemistry 26:217–219CrossRef
    Sannella AR, Messori L, Casini A, Vincieri FF, Bilia AR, Majori G, Severini C (2007) Antimalarial properties of green tea. Biochem Biophys Res Commun 353:177–181CrossRef PubMed
    Shah S, Stapleton PD, Taylor PW (2008) The polyphenol (−)-epicatechin gallate disrupts the secretion of virulence-related proteins by Staphylococcus aureus. Lett Appl Microbiol 46:181–185PubMedCentral CrossRef PubMed
    Shiota S, Shimizu M, Mizushima T, Ito H, Hatano T, Yoshida T, Tsuchiya T (1999) Marked reduction in the minimum inhibitory concentration (MIC) of beta-lactams in methicillin-resistant Staphylococcus aureus produced by epicatechin gallate, an ingredient of green tea (Camellia sinensis). Biol Pharm Bull 22:1388–1390CrossRef PubMed
    Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M (2004) Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 48:1803–1806PubMedCentral CrossRef PubMed
    Stapleton PD, Shah S, Anderson JC, Hara Y, Hamilton-Miller JMT, Taylor PW (2004) Modulation of β-lactam resistance in Staphylococcus aureus by catechins and gallates. Int J Antimicrob Agents 23:462–467CrossRef PubMed
    Stapleton PD, Shah S, Hara Y, Taylor PW (2006) Potentiation of catechin gallate mediated sensitization of Staphylococcus aureus to oxacillin by nongalloylated catechins. Antimicrob Agents Chemother 50:752–755PubMedCentral CrossRef PubMed
    Stapleton PD, Shah S, Ehlert K, Hara Y, Taylor PW (2007) The beta-lactam resistance modifier (−)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus. Microbiol Sgm 153:2093–2103CrossRef
    Sultana S, Ilyas M (1986) A flavanone from Lannea acida. Phytochemistry 25:963–964CrossRef
    Sun Y, Tang C, Wu X, Pan Z, Wang L (2012) Characterization of alkylphenol components in Ginkgo biloba Sarcotesta by thermochemolysis–gas chromatography/mass spectrometry in the presence of trimethylsulfonium hydroxide. Chromatographia 75:387–395CrossRef
    Tasdemir D, Lack G, Brun R, Ruedi P, Scapozza L, Perozzo R (2006) Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids. J Med Chem 49:3345–3353CrossRef PubMed
    Thomford NE, Dzobo K, Chopera D, Wonkam A, Skelton M, Blackhurst D, Chirikure S, Dandara C (2015) Pharmacogenomics implications of using herbal medicinal plants on African populations in Health transition. Pharmaceuticals 8:637–663PubMedCentral CrossRef PubMed
    Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675CrossRef PubMed
    Vitoria M, Granich R, Gilks CF, Gunneberg C, Hosseini M, Were W, Raviglione M, De Cock KM (2009) The global fight against HIV/AIDS, Tuberculosis, and Malaria: current status and future perspectives. Am J Clin Pathol 131:844–848CrossRef PubMed
    World Health Organization (WHO) (2008) Traditional medicine fact sheet number 134. www.​who.​int/​mediacentre/​factsheets/​fs134/​en/​ . Accessed 7th July 2015
    Xiao K-k, Qin R-x, Li B, Li X-l, Peng W, Zhou H (2012) The enhanced anti-MRSA effect by catechins on beta-lactam antibiotics. Zhongguo Kangshengsu Zazhi 37:397-S394
    Xu HX, Lee SF (2001) Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother Res 15:39–43CrossRef PubMed
    Xu ZJ, Yeung SYV, Chang Q, Huang Y, Chen Z-Y (2004) Comparison of antioxidant activity and bioavailability of tea epicatechins and their epimers. Br J Nutr 91:873–881CrossRef PubMed
    Yoda Y, Hu ZQ, Zhao WH, Shimamura T (2004) Different susceptibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate. J Infect Chemother 10:55–58CrossRef PubMed
  • 作者单位:Dorothy A. Okoth (1)
    Hoseah M. Akala (2)
    Jacob D. Johnson (2)
    Neil A. Koorbanally (1)

    1. School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
    2. Department of Emerging Infectious Diseases, United States Army Medical Research Unit-Kenya (USAMRU-K), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, P.O. Box 54, Kisian-Kisumu, Kenya
  • 刊物主题:Pharmacology/Toxicology; Biochemistry, general; Cell Biology;
  • 出版者:Springer US
  • ISSN:1554-8120
文摘
Six novel compounds, 3-nonadec-14′-(Z)-enyl phenol (1a); 4,5-dihydroxy-4,2′-epoxy-5-[16′-Z-18′-E-heneicosenyldiene]-cyclohex-2-enone (2), 2,4,5-trihydroxy-2-[16′-Z-heneicosenyl]-cyclohexanone (3); 4S,6R-dihydroxy-6-[12′-Z-heptadecenyl]-cyclohex-2-enone (4a); 4S,6R-dihydroxy-6-[14′-Z-nonadecenyl]-cyclohex-2-enone (4b); and 1,2,4-trihydroxy-4-[16′-Z-heneicosenyl]-cyclohexane (5) were identified from the roots and stems of Lannea rivae in addition to the known cardanols, 3-heptadec-12′-Z-enyl phenol (1b), 3-pentadec-10′-Z-enyl phenol (1c) and 3-pentadecyl phenol (1d), sitosterol (6), sitosterol glucoside (7), taraxerone (8), taraxerol (9), E-lutein (10), myricetin (11), myricetin-3-O-α-rhamnopyranoside (12), myricetin-3-O-β-galactopyranoside (13) and (-)-epicatechin-3-O-gallate (14). The ketones 4a and 4b were isolated as a mixture and were qualitatively separated and identified by GCMS. Myricetin (11) and epicatechin gallate (14) displayed over 90 % DPPH radical-scavenging activity at 50 μg mL−1, while its glycosides (12 and 13) showed percentages of over 70 % in the same assay. The same compounds 11 and 14 showed antibacterial activity similar to erythromycin and vancomycin against Gram-positive bacteria and were also active against Gram-negative bacteria, but not as much as the cefuroxime, ciprofloxacin and nalidixic acid standards. Compounds 1a–d, 4a–b and 5 were all relatively non-toxic, while 2 (the epoxy cyclohex-2-enone) and 3 (the trihydroxy cyclohexanone) showed more toxicity than the others. These two toxic compounds, 2 and 3 also showed antiplasmodial activity with IC50 values between 0.48 and 2.05 μg mL−1. The mixture of dihydroxy cyclohex-2-enones 4a and 4b, which was far less toxic than 2 and 3, also showed promising antiplasmodial activity and may be a possible lead for further investigation as an antiplasmodial drug.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700