A QM/MM study of the binding of RAPTA ligands to cathepsin B
详细信息    查看全文
  • 作者:Antonella Ciancetta (1)
    Samuel Genheden (2)
    Ulf Ryde (2) ulf.ryde@teokem.lu.se
  • 关键词:QM/MM – ; Ligand ; binding affinities – ; Ruthenium – ; Anticancer drugs – ; Cathepsin B – ; Continuum solvation – ; QM/MM ; PBSA
  • 刊名:Journal of Computer-Aided Molecular Design
  • 出版年:2011
  • 出版时间:August 2011
  • 年:2011
  • 卷:25
  • 期:8
  • 页码:729-742
  • 全文大小:1.9 MB
  • 参考文献:1. Hartinger CG, Dyson PJ (2009) Chem Soc Rev 38:391–401
    2. Nobili S, Mini E, Landini I, Gabbiani C, Casini A, Messori L (2010) Med Res Rev 30:550–580
    3. Gianferrara T, Bratsos I, Alessio E (2009) Dalton Trans 37:7588–7598
    4. Clarke MJ, Zhu F, Frasca DR (1999) Chem Rev 99:2511–2534
    5. Hartinger CG, Zorbas–Seifried S, Jakupec MA, Kynast B, Zorbas H, Keppler BK (2006) J Inorg Biochem 100:891–904
    6. Groessl M, Hartinger CG, Polec-Pawlak K, Jarosz M, Dyson PJ, Keppler BK (2008) Chem Biodivers 5:1609–1614
    7. Sava G, Capozzi I, Bergamo A, Gagliardi R, Cocchietto M, Masiero L, Onisto M, Alessio E, Mestroni G, Garbisa S (1996) Intern J Cancer 68:60–66
    8. Rademaker-Lakhai JM, Van den Bongard D, Pluim D, Beijnen JH, Schellens JHM (2004) Clin Cancer Res 10:3717–3727
    9. Sava G, Bergamo A, Zorzet S, Gava B, Casarsa C, Cocchietto M, Furlani A, Scarcia V, Serli B, Iengo E, Alessio E, Mestroni G (2002) Eur J Cancer 38:427–435
    10. Schluga P, Hartinger CG, Egger A, Reisner E, Galanski M, Jakupec MA, Keppler BK (2006) Dalton Trans 14:1796–1802
    11. Brindell M, Piotrowska D, Shoukry AA, Stochel G, Eldik R (2007) J Biol Inorg Chem 12:809–818
    12. Clarke MJ, Zhu F, Frasca DR (1999) Chem Rev 99(9):2511–2534
    13. Dyson PJ, Sava G (2006) Dalton Trans 16:1929–1933
    14. Yan YK, Melchart M, Habtemariam A, Sadler PJ (2005) Chem Commun 38:4764–4776
    15. Phillips AD, Gonsalvi L, Romerosa A, Vizza F, Peruzzini M (2004) Coord Chem Rev 248:955–993
    16. Bravo J, Bola帽o S, Gonsalvi L, Peruzzini M (2010) Coord Chem Rev 254:555–607
    17. Allardyce CS, Dyson PJ, Ellis DJ, Heath SL (2001) Chem Commun 15:1396–1397
    18. Scolaro C, Bergamo A, Brescacin L, Delno R, Cocchietto M, Laurenczy G, Geldbach TJ, Sava G, Dyson PJ (2005) J Med Chem 48:4161–4171
    19. Bergamo A, Masi A, Dyson PJ, Sava G (2008) Intern J Oncol 33:1281–1289
    20. Casini A, Gabbiani C, Michelucci E, Pieraccini G, Moneti G, Dyson PJ, Messori L (2009) J Biol Inorg Chem 14:761–770
    21. Casini A, Karotki A, Gabbiani C, Rugi F, Vasak M, Messori L, Dyson PJ (2009) Metallomics 1:434–441
    22. Mohanam S, Jasti SL, Kondraganti SR, Chandrasekar N, Lakka SS, Kin Y, Fuller GN, Yung AWK, Kyritsis AP, Dinh DH, Olivero WC, Gujrati M, Ali–Osman F, Rao JS (2001) Oncogene 20:3665–3673
    23. Koblinski JE, Ahram M, Sloane BF (2000) Clin Chim Acta 291:113–135
    24. Casini A, Gabbiani C, Sorrentino F, Rigobello MP, Bindoli A, Geldbach TJ, Marrone A, Re N, Hartinger CG, Dyson PJ, Messori L (2008) J Med Chem 51:6773–6781
    25. Casini A, Edafe F, Erlandsson M, Gonsalvi L, Ciancetta A, Re N, Ienco A, Messori L, Peruzzini M, Dyson PJ (2010) Dalton Trans 39:5556–5563
    26. Senn H, Thiel W (2009) Angew Chem Int Ed 48:1198–1229
    27. Warshel A, Levitt M (1976) J Mol Biol 103:227–249
    28. Alex A, Finn P (1997) J Mol Struct Theochem 398:551–554
    29. Beierlein F, Lanig H, Sch眉rer G, Horn AHC, Clark T (2003) Mol Phys 15:2469–2480
    30. Raha K, Peters MB, Wang B, Yu N, Wollacott AM, Westerhoff LM, Merz KM (2007) Drug Discov Today 12:725–731
    31. Menikarachchi LC, Gasc贸n JA (2010) Curr Top Med Chem 10:46–54
    32. S枚derhjelm P, Kongsted J, Genheden S, Ryde U (2010) Interdiscip Sci Comput Life Sci 2:21–37
    33. Gr盲ter F, Schwarzl SM, Dejaegere A, Fischer S, Smith JC (2005) J Phys Chem B 109:10474–10483
    34. Wang M, Wong CF (2007) J Chem Phys 126:026101 3 pages
    35. Kaukonen M, S枚derhjelm P, Heimdal J, Ryde U (2008) J Phys Chem B 112:12537–12548
    36. Retegan M, Milet A, Jamet H (2009) J Chem Inf Model 49:963–971
    37. Shi J, Lu Z, Zhang Q, Wang M, Wong CF, Liu J (2010) J Theor Comput Chem 9:543–559
    38. Khandelwal A, Lukacova V, Comez D, Kroll DM, Raha S, Balaz S (2005) J Med Chem 48:5437–5447
    39. Khandelwal A, Balaz S (2007) Proteins 69:326–339
    40. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401 4 pages
    41. Treutler O, Ahlrichs R (1995) J Chem Phys 102:346–354
    42. Sch盲fer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577
    43. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305
    44. Eichkorn K, Treutler O, 脰hm H, H盲ser M, Ahlrichs R (1995) Chem Phys Lett 242:652–660
    45. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124
    46. Klamt A, Sch眉眉rmann J (1993) J Chem Soc Perkin Trans 2:799–805
    47. Sch盲fer A, Klamt A, Sattel D, Lohrenz JCW, Eckert F (2000) Phys Chem Chem Phys 2:2187–2193
    48. Klamt A, Jonas V, Burger T, Lohrenz JCW (1998) J Phys Chem A 102:5074–5085
    49. Jensen F (1999) Introduction to computational chemistry. Wiley, Chichester
    50. Becke AD (1993) J Chem Phys 98:1372–1377
    51. Hertwig RH, Koch W (1997) Chem Phys Lett 268:345–351
    52. Huber CP, Campbell RL, Hasnain S, Hirama T to be published PDB file 2IPP
    53. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts BP, Wang B, Hayik S, Roitberg A, Seabra G, Kolossv谩ry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10. University of California, San Francisco
    54. Li H, Robertson AD, Jensen JH (2005) Proteins 61:704–721
    55. Jorgensen WL, Chandrasekhar J, Madura J, Impey RW, Klein ML (1983) J Chem Phys 79:926–935
    56. Ryde U (1996) J Comput Aided Mol Des 10:153–164
    57. Ryde U, Olsson MHM (2001) Intern J Quant Chem 81:335–347
    58. Besler BH, Merz KM Jr, Kollman PA (1990) J Comp Chem 11:431–439
    59. Reuter NI, Dejaegere A, Maigret B, Karplus M (2000) J Phys Chem A 104:1720–1735
    60. Hu L, S枚derhjelm P, Ryde U (2011) J Chem Theory Comput 7:761–777
    61. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357–19363
    62. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197
    63. Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049–1074
    64. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins: Struct Funct Bioinform 65:712–725
    65. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174
    66. Bartolotti LJ, Pedersen LG, Charifson PS (1991) J Comput Chem 12:1125–1128
    67. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283
    68. Sigfridsson E, Ryde U (1998) J Comp Chem 19:377–395
    69. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02, Gaussian, Wallingford
    70. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269–10280
    71. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341
    72. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092
    73. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593
    74. Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) J Chem Phys 81:3684–3690
    75. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatman TE (2000) Acc Chem Res 33:889–897
    76. Onufriev A, Bashford D, Case DA (2004) Proteins 55:383–394
    77. Connolly ML (1983) J Appl Cryst 16:548–558
    78. Kuhn B, Kollman PA (2000) J Med Chem 43:3786–3791
    79. Scolaro C, Hartinger CG, Allerdyce CS, Keppler BK, Dyson PJ (2008) J Inorg Biochem 102:1743–1748
  • 作者单位:1. Dipartimento di Scienze del Farmaco, Universit脿 degli Studi 鈥淕. D鈥橝nnunzio鈥?Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy2. Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00 Lund, Sweden
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Computer Applications in Chemistry
    Animal Anatomy, Morphology and Histology
  • 出版者:Springer Netherlands
  • ISSN:1573-4951
文摘
We have carried out quantum mechanical (QM) and QM/MM (combined QM and molecular mechanics) calculations, as well as molecular dynamics (MD) simulations to study the binding of a series of six RAPTA (Ru(II)-arene-1,3,5-triaza-7-phosphatricyclo-[3.3.1.1] decane) complexes with different arene substituents to cathepsin B. The recently developed QM/MM-PBSA approach (QM/MM combined with Poisson–Boltzmann solvent-accessible surface area solvation) has been used to estimate binding affinities. The QM calculations reproduce the antitumour activities of the complexes with a correlation coefficient (r 2) of 0.35–0.86 after a conformational search. The QM/MM-PBSA method gave a better correlation (r 2 = 0.59) when the protein was fixed to the crystal structure, but more reasonable ligand structures and absolute binding energies were obtained if the protein was allowed to relax, indicating that the ligands are strained when the protein is kept fixed. In addition, the best correlation (r 2 = 0.80) was obtained when only the QM energies were used, which suggests that the MM and continuum solvation energies are not accurate enough to predict the binding of a charged metal complex to a charged protein. Taking into account the protein flexibility by means of MD simulations slightly improves the correlation (r 2 = 0.91), but the absolute energies are still too large and the results are sensitive to the details in the calculations, illustrating that it is hard to obtain stable predictions when full flexible protein is included in the calculations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700