Insight on the interaction of polychlorobiphenyl with nucleic acid–base
详细信息    查看全文
  • 作者:Soraya Abtouche (1) (2) (3)
    Thibaut Very (1)
    Antonio Monari (1)
    Meziane Brahimi (3)
    Xavier Assfeld (1)
  • 关键词:Charge transfer ; Density functional theory ; Dispersion interaction ; DNA nucleobases ; Electrostatic interaction ; π stacking interaction ; PolyChloroBiphenyl
  • 刊名:Journal of Molecular Modeling
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:19
  • 期:2
  • 页码:581-588
  • 全文大小:326KB
  • 参考文献:1. Jimenez B, Wright C, Kelly M, Startin JR (1996) Levels of PCDDs, PCDFs and non-ortho PCBs in dietary supplement fish oil obtained in spain. Chemosphere 32:461-67 CrossRef
    2. Kurokowa Y, Matsueda T, Nakamura M, Takada S, Fukamachi K (1996) Characterization of non-ortho coplanar PCBs, polychlorinated dibenzo-p-dioxines and dibenzofurans in the atmosphere. Chemosphere 32:491-00 CrossRef
    3. Morgan DP, Roan CC (1971) Absorption, storage, and metabolic conversion of ingested DDT and DDT metabolites in man. Arch Environ Health 22:301-08
    4. Kimbrough RD (1995) Polychlorinated biphenyls (PCBs) and human health: an update. Crit Rev Toxicol 25:133-63 CrossRef
    5. Faroon OM, Keith S, Jones D, De Rosa C (2001) Carcinogenic effects of polychlorobiphenyls. Toxicol Ind Health 17:41-2 CrossRef
    6. Safe SH (1994) Polychlorinated biphenyls (PCBs): environnemental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol 24:87-49 CrossRef
    7. Preston BD, Miller JA, Miller EC (1984) Reactions of 2,2-5,5-tetrachlorobiphenyl 3,4-oxide with methionine, cysteine and glutathione in relation to the formation of methylthio-metabolites of 2,2-5,5-tetrachlorobiphenyl in the rat and mouse. Chem Biol Interact 50:289-12 CrossRef
    8. Narbonne JF, Daubeze M (1980) In vitro binding hexachlorobiphenyl to DNA and proteins. Toxicology 16:173-75 CrossRef
    9. Poland A, Glover E, Kende AS (1976) Stereospecific high binding affinity of 2,3,7,8-teratchlorodibenzo-p-dioxin by cytosols. Evidence that the binding species is a receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem 251:4936-946
    10. Cheney BV, Tolly T (1979) Electronic factor affecting receptor binding of binding of dibenzo-p-dioxins and dibenzofurans. Int J Quant Chem 16:87-10 CrossRef
    11. Parthasarathi R, Padmanabhan J, Sbramanian V, Maiti B, Chattaraj PK (2003) J Phys Chem A 107:10346-0352 CrossRef
    12. Yoshimura H, Yoshihara S, Ozawa N, Miki M (1979) Possible correlation between induction modes of hepatic enzymes by PCBs and their toxicity in rats. Ann NY Acad Sci 320:179-92
    13. Jimenez B, Hernandez LM, Eljarrat E, Rivera J, Gonzalez MJ (1996) Level of PCDDs, PCDFs, and non-ortho PCBs in serum samples of non-exposed individuals living in Madrid (Spain). Chemosphere 33:2403-410 CrossRef
    14. Tanabe S, Kannan N, Wakimoto T, Tatsukawa R (1987) Method for the determination of three toxic nonortho chlorine substituted coplanar PCBs in environmental samples at part-per-trillion levels. Int J Environ Anal Chem 29:199-13 CrossRef
    15. Faqi AS, Dalsenter PR, Merker HJ, Chahoud I (1998) Effects on developmental landmarks and reproductive capability of 3,3-4,4-tetrachlorobiphenyl and 3,3-4,4-pentachlorobiphenyl in offspring of rats exposed during pregnancy. Hum Exp Toxicol 17:365-72 CrossRef
    16. Gray LE Jr, Wolf C, Mann P, Price M, Cooper RL, Ostby J (1999) Adminstration of potentially antiangenic pesticides and toxic substances (dibutyl- and dielthyl hexyl phtalate, PCB169, and ethane dimethane sulfonate) during sexuel differentiation produces divers profiles of reproductive malformations in the male rate. Toxicol Ind Health 15:94-18 CrossRef
    17. Hong C, Bush B, Xiao J (1992) Coplanar PCBs in fish and mussels from marine and estuarine waters of New York states. Ecotoxicol Environ Safety 23:118-31 CrossRef
    18. Sargent S, Roloff B, Meisner L (1989) In vitro chromosome damage due to PCB interactions. Mutat Res 224:79-8 CrossRef
    19. Wasson JS, Huff JE, Loprieno N (1977) A review of the genetic toxicology of chlorinated dibenzo-p-dioxins. Mutat Res 47:141-60 CrossRef
    20. Poland A, Glover E (1980) 2,3,7,8-tetrachlorodibenzo-p-dioxin: segregation of toxicity with the Ah locus. Mol Pharmacol 17:86-4
    21. Safe S (1986) Comparative toxicology and mechanism of action of polychlorinated dibenzofurans. Annu Rev Pharmacol Toxicol 26:371-99 CrossRef
    22. Swart M, Wijst TV, Guerra CF, Bickelhaupt FM (2007) π-π stacking tackled with density functional theory. J Mol Model 13:1245-257 CrossRef
    23. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can J Phys 58:1200-211 CrossRef
    24. Zimmerli U, Parrinello M, Koumoustsakos P (2004) Dispersion corrections to density functionals for water aromatic interactions. J Chem Phys 120:2693-699 CrossRef
    25. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463-473 CrossRef
    26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian03, revision B.05. Gaussian, Inc, Wallingford
    27. Sponer J, Leszczynski J, Hobza P (1996) Nature of nucleic acid???base stacking: nonempirical ab initio and empirical potential characterization of 10 stacked base dimers. Comparison of stacked and H-bonded base pairs. J Phys Chem 100:5590-596 CrossRef
    28. Hobza P, Sponer J (1999) Structure, energetics, and dynamics of the nucleic acid base pairs: nonempirical Ab initio calculations. Chem Rev 99:3247-276 CrossRef
    29. Sponer J, Florian J, Ng HL, Sponer JE, Spackova N (2000) Local conformational variations observed in B-DNA crystals do not improve base stacking: computational analysis of base stacking in a d(CATGGGCCCATG)2 B?A intermediate crystal structure. Nucleic Acids Res 28:4893-902 CrossRef
    30. Swart M, Ehlers AW, Lammertsma K (2004) Performance of the OPBE exchange-correlation functional. Mol Phys 102:2467-474 CrossRef
    31. Cassandra DM, Wetmore C, Wetmore SD (2009) Noncovalent interactions involving histidine: the effect of charge on π???π stacking and T-shaped interactions with the DNA nucleobases. J Phys Chem B 113:16046-6058 CrossRef
    32. Rutledge LR, Wheaton CA, Wetmore SD (2007) A computational characterization of the hydrogen-bonding and stacking interactions of hypoxanthine. Phys Chem Chem Phys 9:497-09 CrossRef
    33. Mulliken RS (1955) Electronic population analysis on LCAO MO molecular wave functions I. J Chem Phys 23:1833-840 CrossRef
  • 作者单位:Soraya Abtouche (1) (2) (3)
    Thibaut Very (1)
    Antonio Monari (1)
    Meziane Brahimi (3)
    Xavier Assfeld (1)

    1. Equipe de Chimie et Biochimie Théoriques, UMR 7565 CNRS UL, Université de Lorraine, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
    2. Centre de Recherche Scientifique et Technique en Analyses Physico -Chimiques, BP 248, Alger, RP, 16004, Algerie
    3. Laboratoire Physico Chimie Théorique et Chimie Informatique, USTHB, BP 32 EL ALIA 16111 BAB EZZOUAR, Alger, Algerie
  • ISSN:0948-5023
文摘
The interaction between one polychlorobiphenyl (3,3-4,4--tetrachlorobiphenyl, coded PCB77) and the four DNA nucleic acid–base is studied by means of quantum mechanics calculations in stacked conformations. It is shown that even if the intermolecular dispersion energy is the largest component of the total interaction energy, some other contributions play a non negligible role. In particular the electrostatic dipole-dipole interaction and the charge transfer from the nucleobase to the PCB are responsible for the relative orientation of the monomers in the complexes. In addition, the charge transfer tends to flatten the PCB, which could therefore intercalate more easily between DNA base pairs. From these seminal results, we predict that PCB could intercalate completely between two base pairs, preferably between Guanine:Cytosine pairs. Figure Molecular orbital interaction diagram of stacked PCB77 and Adenine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700