Metabolic profiling of transgenic wheat over-expressing the high-molecular-weight Dx5 glutenin subunit
详细信息    查看全文
  • 作者:Boryana S. Stamova (1) (2) (3) (4)
    Ute Roessner (5)
    Suganthi Suren (5)
    Debbie Laudencia-Chingcuanco (2)
    Antony Bacic (5)
    Diane M. Beckles (1)
  • 关键词:Transgenic wheat ; Storage protein ; GC–MS ; Multivariate analysis
  • 刊名:Metabolomics
  • 出版年:2009
  • 出版时间:June 2009
  • 年:2009
  • 卷:5
  • 期:2
  • 页码:239-252
  • 全文大小:600KB
  • 参考文献:1. Abdi, H. (2007). Bonferroni and Sidak corrections for multiple comparisons. In N. J. Salkind (Ed.), / Encyclopedia of measurement and statistics (pp. 1-). Thousand Oaks, CA: Sage.
    2. Altpeter, F., Popelka, J. C., & Wieser, H. (2004). Stable expression of 1Dx5 and 1Dy10 high-molecular-weight glutenin subunit genes in transgenic rye drastically increases the polymeric glutelin fraction in rye flour. / Plant Molecular Biology, / 54, 783-92. doi:10.1007/s11103-004-0122-5 . CrossRef
    3. Alvarez, M. L., Guelman, S., Halford, N. G., Lustig, S., Reggiardo, M. I., Ryabushkina, N., et al. (2000). Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. / Theoretical and Applied Genetics, / 100, 319-27. doi:10.1007/s001220050042 . CrossRef
    4. ap Rees, T., & Hill, S. A. (1994). Metabolic control analysis of plant-metabolism. / Plant, Cell & Environment, / 17, 587-99. doi:10.1111/j.1365-3040.1994.tb00151.x . CrossRef
    5. Baker, J. M., Hawkins, N. D., Ward, J. L., Lovegrove, A., Napier, J. A., Shewry, P. R., et al. (2006). A metabolomic study of substantial equivalence of field-grown genetically modified wheat. / Plant Biotechnology Journal, / 4, 381-92. doi:10.1111/j.1467-7652.2006.00197.x . CrossRef
    6. Barcelo, P., Rasco-Gaunt, S., Thorpe, C., & Lazzeri, P. A. (2001). Transformation and gene expression. / Advances in Botanical Research Incorporating Advances in Plant Pathology, / 34(34), 59-26.
    7. Barro, F., Barcelo, P., Lazzeri, P. A., Shewry, P. R., Martin, A., & Ballesteros, J. (2002). Field evaluation and agronomic performance of transgenic wheat. / Theoretical and Applied Genetics, / 105, 980-84. doi:10.1007/s00122-002-0996-z . CrossRef
    8. Baudo, M. M., Lyons, R., Powers, S., Pastori, G. M., Edwards, K. J., Holdsworth, M. J., et al. (2006). Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. / Plant Biotechnology Journal, / 4, 369-80. doi:10.1111/j.1467-7652.2006.00193.x . CrossRef
    9. Beckles, D. M., Smith, A. M., & ap Rees, T. (2001). A cytosolic ADP-glucose pyrophosphorylase is a feature of / Graminaceous endosperms, but not of other starch-storing organs. / Plant Physiology, / 125, 818-27. doi:10.1104/pp.125.2.818 . CrossRef
    10. Blechl, A., Lin, J., Nguyen, S., Chan, R., Anderson, O. D., & Dupont, F. M. (2007). Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. / Journal of Cereal Science, / 45, 172-83. doi:10.1016/j.jcs.2006.07.009 . CrossRef
    11. Blechl, A. E., & Anderson, O. D. (1996). Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. / Nature Biotechnology, / 14, 875-79. doi:10.1038/nbt0796-875 . CrossRef
    12. Blechl, A. E., Le, H. Q., & Anderson, O. D. (1998). Engineering changes in wheat flour by genetic transformation. / Journal of Plant Physiology, / 152, 703-07.
    13. Bregitzer, P., Blechl, A. E., Fiedler, D., Lin, J., Sebesta, P., De Soto, J. F., et al. (2006). Changes in high molecular weight glutenin subunit composition can be genetically engineered without affecting wheat agronomic performance. / Crop Science, / 46, 1553-563. doi:10.2135/cropsci2005.10-0361 . CrossRef
    14. Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. / Metabolomics, / 2, 171-96. doi:10.1007/s11306-006-0037-z . CrossRef
    15. Caspi, R., Foerster, H., Fulcher, C., Hopkinson, R., Ingraham, J., Kaipa, P., et al. (2006). MetaCyc: A multiorganism database of metabolic pathways and enzymes. / Nucleic Acids Research, / 34, D511–D514. doi:10.1093/nar/gkj128 . CrossRef
    16. Cheung, C. P., & Marcus, A. (1976). Guanine nucleotide determination in extracts of wheat embryo. / FEBS Letters, / 70, 141-44. doi:10.1016/0014-5793(76)80744-2 . CrossRef
    17. Christensen, A. H., & Quail, P. H. (1996). Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. / Transgenic Research, / 5, 213-18. doi:10.1007/BF01969712 . CrossRef
    18. FAO. (2006). Wheat. / FAO statistical yearbook.
    19. Fell, D. (1997). / Understanding the control of metabolism. London: Portland Press.
    20. Filipecki, M., & Malepszy, S. (2006). Unintended consequences of plant transformation: A molecular insight. / Journal of Applied Genetics, / 47, 277-86.
    21. Fu, D. L., Uauy, C., Blechl, A., & Dubcovsky, J. (2007). RNA interference for wheat functional gene analysis. / Transgenic Research, / 16, 689-01. doi:10.1007/s11248-007-9150-7 . CrossRef
    22. Giroux, M. J., Boyer, C., Feix, G., & Hannah, L. C. (1994). Coordinated transcriptional regulation of storage product genes in the maize endosperm. / Plant Physiology, / 106, 713-22.
    23. He, G. Y., Rooke, L., Steele, S., Bekes, F., Gras, P., Tatham, A. S., et al. (1999). Transformation of pasta wheat ( / Triticum turgidum L-var. durum) with high-molecular-weight glutenin subunit genes and modification of dough functionality. / Molecular Breeding, / 5, 377-86. doi:10.1023/A:1009681321708 . CrossRef
    24. Jacobs, A., Lunde, C., Bacic, A., Tester, M., & Roessner, U. (2007). The impact of constitutive heterologous expression of a moss Na+?transporter on the metabolomes of rice and barley. / Metabolomics, / 3, 307-17. doi:10.1007/s11306-007-0056-4 . CrossRef
    25. Joachimiak, M. P. J., Weissman, J. L., & May, B. C. H. (2006). JColorGrid: Software for the visualizaton of biological measurements. / BMC Bioinformatics, / 7, 225. doi:10.1186/1471-2105-7-225 . CrossRef
    26. Kermit, M., & Tomic, O. (2003). Independent component analysis applied on gas sensor array measurement data. / IEEE Sensors Journal, / 3, 218-28. doi:10.1109/JSEN.2002.807488 . CrossRef
    27. Laudencia-Chingcuanco, D. L., Stamova, B. S., You, F. M., Lazo, G. R., Beckles, D. M., & Anderson, O. D. (2007). Transcriptional profiling of wheat caryopsis development using cDNA microarrays. / Plant Molecular Biology, / 63, 651-68. doi:10.1007/s11103-006-9114-y . CrossRef
    28. Morgenthal, K., Weckwerth, W., & Steuer, R. (2006). Metabolomic networks in plants: Transitions from pattern recognition to biological interpretation. / Bio Systems, / 83, 108-17. doi:10.1016/j.biosystems.2005.05.017 .
    29. Payne, P. I., Nightingale, M. A., Krattiger, A. F., & Holt, L. M. (1987). The relationship between Hmw glutenin subunit composition and the bread-making quality of british-grown wheat-varieties. / Journal of the Science of Food and Agriculture, / 40, 51-5. doi:10.1002/jsfa.2740400108 . CrossRef
    30. Pomeranz, Y. (1988). / Wheat: chemistry and technology. St. Paul: American Association of Cereal Chemists.
    31. Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N. S., Hayes, A., Walsh, M. C., et al. (2001). A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. / Nature Biotechnology, / 19, 45-0. doi:10.1038/83496 . CrossRef
    32. Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., et al. (2001). Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. / The Plant Cell, / 13, 11-9. CrossRef
    33. Roessner, U., Patterson, J. H., Forbes, M. G., Fincher, G. B., Langridge, P., & Bacic, A. (2006). An investigation of boron toxicity in barley using metabolomics. / Plant Physiology, / 142, 1087-101. doi:10.1104/pp.106.084053 . CrossRef
    34. Rooke, L., Steele, S. H., Barcelo, P., Shewry, P. R., & Lazzeri, P. A. (2003). Transgene inheritance, segregation and expression in bread wheat. / Euphytica, / 129, 301-09. doi:10.1023/A:1022296017801 . CrossRef
    35. Scholz, M., Gatzek, S., Sterling, A., Fiehn, O., & Selbig, J. (2004). Metabolite fingerprinting: Detecting biological features by independent component analysis. / Bioinformatics (Oxford, England), / 20, 2447-454. doi:10.1093/bioinformatics/bth270 . CrossRef
    36. Shewry, P. R., Gilbert, S. M., Savage, A. W. J., Tatham, A. S., Wan, Y. F., Belton, P. S., et al. (2003). Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties. / Theoretical and Applied Genetics, / 106, 744-50.
    37. Shewry, P. R., Halford, N. G., Belton, P. S., & Tatham, A. S. (2002). The structure and properties of gluten: An elastic protein from wheat grain. / Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, / 357, 133-42. CrossRef
    38. Stamova, B. S. (2007). / Gene-to-metabolite networks in developing wheat caryopsis. Ph.D. Thesis, University of California-Davis, p. 150.
    39. Statsoft. (2003). / Statistica dataminer.
    40. Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). / Principles and procedures of statistics a biometrical approach. New York: McGraw-Hill.
    41. Steuer, R. (2006). On the analysis and interpretation of correlations in metabolomic data. / Briefings in Bioinformatics, / 7, 151-58. doi:10.1093/bib/bbl009 . CrossRef
    42. Steuer, R. (2007). Computational approaches to the topology, stability and dynamics of metabolic networks. / Phytochemistry, / 68, 2139-151. doi:10.1016/j.phytochem.2007.04.041 . CrossRef
    43. Steuer, R., Kurth, J., Fiehn, O., & Weckwerth, W. (2003). Observing and interpreting correlations in metabolomic networks. / Bioinformatics (Oxford, England), / 19, 1019-026. doi:10.1093/bioinformatics/btg120 . CrossRef
    44. Sweetlove, L. J., & Fernie, A. R. (2005). Regulation of metabolic networks: Understanding metabolic complexity in the systems biology era. / The New Phytologist, / 168, 9-3. doi:10.1111/j.1469-8137.2005.01513.x . CrossRef
    45. Tetlow, I. J., Morell, M. K., & Emes, M. J. (2004). Recent developments in understanding the regulation of starch metabolism in higher plants. / Journal of Experimental Botany, / 55, 2131-145. doi:10.1093/jxb/erh248 . CrossRef
    46. Vain, P., James, V. A., Worland, B., & Snape, J. W. (2002). Transgene behaviour across two generations in a large random population of transgenic rice plants produced by particle bombardment. / Theoretical and Applied Genetics, / 105, 878-89. doi:10.1007/s00122-002-1039-5 . CrossRef
    47. Vasil, I. K. (2007). Molecular genetic improvement of cereals: Transgenic wheat ( / Triticum aestivum L.). / Plant Cell Reports, / 26, 1133-154. doi:10.1007/s00299-007-0338-3 . CrossRef
    48. Weckwerth, W., & Fiehn, O. (2002). Can we discover novel pathways using metabolomic analysis? / Current Opinion in Biotechnology, / 13, 156-60. doi:10.1016/S0958-1669(02)00299-9 . CrossRef
    49. Weckwerth, W., Loureiro, M., Wenzel, K., & Fiehn, O. (2004). Differential metabolic networks unravel the effects of silent plant phenotypes. / Proceedings National Academy Science USA, 101, 7809-814. CrossRef
  • 作者单位:Boryana S. Stamova (1) (2) (3) (4)
    Ute Roessner (5)
    Suganthi Suren (5)
    Debbie Laudencia-Chingcuanco (2)
    Antony Bacic (5)
    Diane M. Beckles (1)

    1. Department of Plant Sciences-Mail Stop 3, University of California-Davis, 1 Peter Shields Avenue, Davis, CA, 95616, USA
    2. Genomics and Gene Discovery Unit, USDA-Albany, 800 Buchanan Street, Albany, CA, 94710, USA
    3. Genetics Resources Conservation Program, University of California-Davis, 1 Shields Avenue, Davis, CA, 95618, USA
    4. M.I.N.D Institute, Department of Neurology, School of Medicine, University of California Medical Center, 2805 50th Street, Sacramento, CA, 95817, USA
    5. Australian Centre for Plant Functional Genomics and Metabolomics Australia, School of Botany, University of Melbourne, Parkville, 3010, VIC, Australia
  • ISSN:1573-3890
文摘
The primary aim of this work was to evaluate potential changes in the metabolic network of transgenic wheat grain over-expressing the high-molecular-weight (HMW) glutenin Dx5-subunit gene. GC–MS and multivariate analyses were used to compare the metabolite profiles of developing caryopses of two independently transformed lines over-expressing Dx5 and another two independently transformed lines expressing only the selectable-marker gene (controls). Developing grain at 7, 14 and 21 Days Post-Anthesis (DPA) was studied to observe differences in metabolically active tissues. There was no distinction between the Dx5 transformants and the controls by principal component analysis (PCA) suggesting that their metabolite compositions were similar. Most changes in metabolite levels and starch occurred at 14 DPA but tapered off by 21 DPA. Only 3 metabolites, guanine, 4-hydroxycinnamic acid and Unknown 071306a, were altered due to Dx5 expression after correction for false discovery rates (P?<?0.0005). However, discriminant function analysis (DFA) and correlative analyses of the metabolites showed that Dx5-J, which had the highest level of Dx5 protein in ripe caryopses, could be distinguished from the other genotypes. The second aim of this work was to determine the influence of gene transformation on the metabolome. Cross-comparison of the transformed controls to each other, and to the Dx5 genotypes showed that approximately 50% of the metabolic changes in the Dx5 genotypes were potentially due to variations arising from gene transformation and not from the expression of the Dx5-gene per se. This study therefore suggests the extent to which plant transformation by biolistics can potentially influence phenotype.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700