Shoot-derived signals other than auxin are involved in systemic regulation of strigolactone production in roots
详细信息    查看全文
  • 作者:Kaori Yoneyama (1)
    Takaya Kisugi (1) (3)
    Xiaonan Xie (1)
    Ryota Arakawa (2)
    Tatsuhiro Ezawa (2)
    Takahito Nomura (1)
    Koichi Yoneyama (1)

    1. Center for Bioscience Research and Education
    ; Utsunomiya University ; 350 Mine-machi ; Utsunomiya ; 321-8505 ; Japan
    3. Department of Biomolecular Sciences
    ; Graduate School of Life Sciences ; Tohoku University ; 2-1-1 Katahira ; Aoba-Ku ; Sendai ; 980-8577 ; Japan
    2. Graduate School of Agriculture
    ; Hokkaido University ; Sapporo ; 060-8589 ; Japan
  • 关键词:Auxin transport inhibitor ; Indole ; 3 ; acetic acid ; Nitrogen deficiency ; Phosphorus deficiency ; Shoot ; derived signal ; Sorghum ; Strigolactone
  • 刊名:Planta
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:241
  • 期:3
  • 页码:687-698
  • 全文大小:498 KB
  • 参考文献:1. Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA 108:20242鈥?0247. doi:10.1073/pnas.1111902108 CrossRef
    2. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824鈥?27. doi:10.1038/nature03608 CrossRef
    3. Alvarez JM, Vidal EA, Gutierrez RA (2012) Integration of local and systemic signaling pathways for plant N responses. Curr Opin Plant Biol 15:185鈥?91. doi:10.1016/j.pbi.2012.03.009 CrossRef
    4. Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) / DWARF10, an / RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019鈥?029. doi:10.1111/j.1365-313X.2007.03210.x CrossRef
    5. Awad AA, Sato D, Kusumoto D, Kamioka H, Takeuchi Y, Yoneyama K (2006) Characterization of strigolactones, germination stimulants for the root parasitic plants / Striga and / Orobanche, produced by maize, millet and sorghum. Plant Growth Regul 48:221鈥?27. doi:10.1007/s10725-006-0009-3
    6. Balzergue C, Puech-Pag猫s V, B茅card G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049鈥?060. doi:10.1093/jxb/erq335 CrossRef
    7. Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhard D (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in / Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002鈥?017. doi:10.1111/j.1365-313X.2010.04385.x CrossRef
    8. Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of / Brassica napus. Plant J 53:739鈥?49. doi:10.1111/j.1365-313X.2007.03368.x CrossRef
    9. Chiou T-J, Lin S-I (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185鈥?06. doi:10.1146/annurev-arplant-042110-103849 CrossRef
    10. Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed ( / Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189鈥?190. doi:10.1126/science.154.3753.1189 CrossRef
    11. Dun EA, Brewer PB, Beveridge CA (2009) Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci 14:364鈥?72. doi:10.1016/j.tplants.2009.04.003 CrossRef
    12. Ejeta G, Gressel J (eds) (2007) Integrating new technologies for / Striga control: towards ending the witch-hunt. World Scientific Publishing Co. Pte. Ltd., Singapore
    13. Foo E (2013) Auxin influences strigolactones in pea mycorrhizal symbiosis. J Plant Physiol 170:523鈥?28. doi:10.1016/j.jplph.2012.11.002 CrossRef
    14. Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073鈥?081. doi:10.1007/s00425-011-1516-7 CrossRef
    15. Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene / RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17:464鈥?74. doi:10.1105/tpc.104.026716 CrossRef
    16. Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant 6:76鈥?7. doi:10.1093/mp/sss115 CrossRef
    17. Fujii H, Chiou T-J, Lin S-I, Aung K, Zhu J-K (2005) A miRNA involved in phosphate-starvation response in / Arabidopsis. Curr Biol 15:2038鈥?043. doi:10.1016/j.cub.2005.10.016 CrossRef
    18. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pag猫s V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, B茅card G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189鈥?94. doi:10.1038/nature07271 CrossRef
    19. Hauck C, M眉ller S, Schildknecht H (1992) A germination stimulant for parasitic flowering plants from / Sorghum bicolor, a genuine host plant. J Plant Physiol 139:474鈥?78. doi:10.1016/S0176-1617(11)80497-9 CrossRef
    20. Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22:4523鈥?533 CrossRef
    21. Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232鈥?47. doi:10.1104/pp.106.092130 CrossRef
    22. Jamil M, Kanampiu FK, Karaya H, Charnikhova T, Bouwmeester HJ (2012) / Striga hermonthica parasitism in maize in response to N and P fertilisers. Field Crops Res 134:1鈥?0. doi:10.1016/j.fcr.2012.03.015 CrossRef
    23. Johnson X, Brcich T, Dun EA, Goussot M, Haurogn茅 K, Beveridge CA, Rameau C (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 142:1014鈥?026. doi:10.1104/pp.106.087676 CrossRef
    24. Kapulnik Y, Delaux P-M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, S茅jalon-Delmas N, Combier J-P, B茅card G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011) Strigolactones affect lateral root formation and root-hair elongation in / Arabidopsis. Planta 233:209鈥?16. doi:10.1007/s00425-010-1310-y CrossRef
    25. Karthikeyan AS, Varadarajan DK, Jain A, Held MA, Carpita NC, Raghothama KG (2007) Phosphate starvation responses are mediated by sugar signaling in / Arabidopsis. Planta 225:907鈥?18 CrossRef
    26. Koegel S, Boller T, FL M, Wiemken A, Courty PE (2013) Rapid nitrogen transfer in the / Sorghum bicolor- / Glomus mosseae arbuscular mycorrhizal symbiosis. Plant Signal Behav 8:e25229. doi:10.4161/psb.25229 CrossRef
    27. Koltai H, Cohen M, Chesin O, Mayzlish-Gati E, B茅card G, Puech-Pag猫s V, Dor BB, Resnick N, Wininger S, Kapulnik Y (2011) Light is a positive regulator of strigolactone levels in tomato roots. J Plant Physiol 168:1993鈥?996. doi:10.1016/j.jplph.2011.05.022 CrossRef
    28. L贸pez-R谩ez JA, Charnikhova T, G贸mez-Rold谩n V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, B茅card G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863鈥?74. doi:10.1111/j.1469-8137.2008.02406.x CrossRef
    29. Marzec M, Muszynska A, Gruszka D (2013) The role of strigolactones in nutrient-stress responses in plants. Int J Mol Sci 14:9286鈥?304. doi:10.3390/ijms14059286 CrossRef
    30. Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci USA 111:6092鈥?097. doi:10.1073/pnas.1322045111 CrossRef
    31. Nanamori M, Shinano T, Wasaki J, Yamamura T, Rao IM, Osaki M (2004) Low phosphorus tolerance mechanisms: phosphorus recycling and photosynthate partitioning in the tropical forage grass, / Brachiaria hybrid cultivar Mulato compared with rice. Plant Cell Physiol 45:460鈥?69. doi:10.1093/pcp/pch056 CrossRef
    32. Pant BD, Buhtz A, Kehr J, Scheible W-R (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731鈥?38. doi:10.1111/j.1365-313X.2007.03363.x CrossRef
    33. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob ur R, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551鈥?56. doi:10.1038/nature07723 CrossRef
    34. Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721鈥?34. doi:10.1104/pp.110.166645 CrossRef
    35. Siame BP, Weerasuriya Y, Wood K, Ejeta G, Butler LG (1993) Isolation of strigol, a germination stimulant for / Striga asiatica, from host plants. J Agric Food Chem 41:1486鈥?491. doi:10.1021/jf00033a025 CrossRef
    36. Snowden KC, Simkin AJ, Janssen BJ, Templeton KR, Loucas HM, Simons JL, Karunairetnam S, Gleave AP, Clark DG, Klee HJ (2005) The / Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17:746鈥?59 CrossRef
    37. Soto MJ, Fern谩ndez-Aparicio M, Castellanos-Morales V, Carc铆a-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa ( / Medicago sativa). Soil Biol Biochem 42:383鈥?85. doi:10.1016/j.soilbio.2009.11.007 CrossRef
    38. Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot. doi:10.1093/jxb/eru029 (in press)
    39. Tadano T, Tanaka A (1980) The effect of low phosphate concentrations in culture medium on early growth of several crop plants (in Japanese, translated by the authors). Jpn J Soil Sci Plant Nutr 51:399鈥?04
    40. Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y (2012) Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107鈥?17. doi:10.1093/pcp/pcr176 CrossRef
    41. Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741鈥?49. doi:10.1038/nchembio.435 CrossRef
    42. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195鈥?00. doi:10.1038/nature07272 CrossRef
    43. Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118鈥?126. doi:10.1093/pcp/pcq084 CrossRef
    44. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669鈥?87. doi:10.1016/j.cell.2009.01.046 CrossRef
    45. Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875鈥?82 CrossRef
    46. Xie X, Yoneyama K, Kusumoto D, Yamada Y, Takeuchi Y, Sugimoto Y, Yoneyama K (2008) Sorgomol, germination stimulant for root parasitic plants, produced by / Sorghum bicolor. Tetrahedron Lett 49:2066鈥?068. doi:10.1016/j.tetlet.2008.01.131 CrossRef
    47. Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S, Akiyama K, Hayashi H, Yokota T, Nomura T, Yoneyama K (2013) Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol Plant 6:153鈥?63. doi:10.1093/mp/sss139 CrossRef
    48. Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M (2014) Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta 240:399鈥?08. doi:10.1007/s00425-014-2096-0 CrossRef
    49. Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007a) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125鈥?32. doi:10.1007/s00425-007-0600-5 CrossRef
    50. Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007b) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031鈥?038. doi:10.1007/s00425-006-0410-1 CrossRef
    51. Yoneyama K, Xie X, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2011) Characterization of strigolactones exuded by Asteraceae plants. Plant Growth Regul 65:495鈥?04. doi:10.1007/s10725-011-9620-z CrossRef
    52. Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197鈥?207. doi:10.1007/s00425-011-1568-8 CrossRef
    53. Yoneyama K, Xie X, Kisugi T, Nomura T, Yoneyama K (2013) Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum. Planta 238:885鈥?94. doi:10.1007/s00425-013-1943-8 CrossRef
  • 刊物主题:Plant Sciences; Agriculture; Ecology; Forestry;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-2048
文摘
Main conclusion Nitrogen and phosphorus fertilization in one side of split-root sorghum plants systemically reduced root contents of strigolactones in both sides of the split roots. Shoot-derived signals other than auxin appeared to be involved in this process. Strigolactones (SLs) are a novel class of plant hormones regulating both shoot and root architectures and suggested to be functioning downstream of auxin. The levels of SLs in plant tissues and root exudates are regulated by nutrients, especially phosphorus (P) and nitrogen (N); however, the underlying mechanism remains elusive. We examined the effects of N and P fertilization on root contents of two SLs, sorgomol and 5-deoxystrigol, in sorghum plants pre-incubated under N and P free conditions using a split-root system. N and P fertilization to one side of the split-root plants systemically reduced root contents of SLs in both sides of the split roots. The shoot N and P levels increased when one side of the split-root plants was fertilized, while N and P levels in the non-fertilized split roots were unaffected. N fertilization decreased shoot and root IAA (indole-3-acetic acid) levels, while P fertilization did not affect them. IAA applied to the shoot apices increased root contents of 5-deoxystrigol but not that of sorgomol only when the plants were grown under P free conditions. Shoot (leaf) removal dramatically decreased the root contents of SLs but did not affect root IAA levels, and IAA applied to the stumps of leaves could not restore root contents of SLs. Consequently, shoot-derived signals other than auxin are suggested to be involved in the regulation of SL production in roots.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700