Effect of processing parameters on morphology and tensile properties of PP/EPDM/organoclay nanocomposites fabricated by friction stir processing
详细信息    查看全文
  • 作者:M. R. Nakhaei ; G. Naderi ; A. Mostafapour
  • 关键词:PP/EPDM/nanoclay nanocomposites ; Friction stir processing ; Tensile strength ; Elongation ; X ; ray diffraction
  • 刊名:Iranian Polymer Journal
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:25
  • 期:2
  • 页码:179-191
  • 全文大小:5,494 KB
  • 参考文献:1.Lee HS, Fasulo PD, Rodgers WR, Paul DR (2005) TPO based nanocomposites. Part 1: morphology and mechanical properties. Polymer 46:11673–11689CrossRef
    2.Mahallati P, Arefazar A, Naderi G (2011) Thermal and morphological properties of thermoplastic elastomer nanocomposites based on PA6/NBR. Iran J Chem Eng 8:56–65
    3.Thompson A, Bianchi O, Amorim C, Lemos C, Teixeira SR, Samios D, Giacomelli C, Crespo JS, Machado G (2011) Uniaxial compression and stretching deformation of an i-PP/EPDM/organoclay nanocomposite. Polymer 52:1037–1044CrossRef
    4.Lei SG, Hoa SV, Ton-That MT (2006) Effect of clay types on the processing and properties of polypropylene nanocomposites. Compos Sci Technol 66:1274–1279CrossRef
    5.Nakhaei MR, Mostafa Arab NB, Naderi G (2013) Application of response surface methodology for weld strength prediction in laser welding of polypropylene/clay nanocomposite. Iran Polym J 22:351–360CrossRef
    6.Avella M, Cosco S, Volpe GD, Errico ME (2005) Crystallization behavior and properties of exfoliated isotactic polypropylene/organoclay nanocomposites. Adv Polym Technol 24:132–144CrossRef
    7.Nakhaei MR, Mostafa Arab NB, Naderi G, Hoseinpour M (2013) Experimental study on optimization of CO2 laser welding parameters for polypropylene-clay nanocomposite welds. J Mech Sci Technol 27:843–848CrossRef
    8.Su F, Huang H, Zhao Y (2011) Microstructure and mechanical properties of polypropylene/poly (ethylene-co-octene copolymer)/clay ternary nanocomposites prepared by melt blending using supercritical carbon dioxide as a processing aid. Compos B 42:421–428CrossRef
    9.Naderi G, Khosrokhavar R, Shokoohi S, Bakhshandeh GR, Ghoreishy MHR (2014) Dynamically vulcanized polypropylene/ethylene-propylene diene monomer/organoclay nanocomposites: effect of mixing sequence on structural, rheological, and mechanical properties. J Vinyl Additive Technol. doi:10.​1002/​vnl.​21432
    10.Khosrokhavar R, Naderi G, Bakhshandeh GR, Ghoreishy MHR (2011) Effect of processing parameters on PP/EPDM/organoclay nanocomposites using Taguchi analysis method. Iran Polym J 20:41–53
    11.Li C, Jiang Z, Tang T (2014) Morphological evolution and properties of thermoplastic vulcanizate/organoclay nanocomposites. J Appl Polym Sci 131:40618. doi:10.​1002/​app.​40618
    12.Khodabakhshi F, Simchi A, Kokabi AH, Nosko M, Simanĉik F, Švec P (2014) Microstructure and texture development during friction stir processing of Al–Mg alloy sheets with TiO2 nanoparticles. Mater Sci Eng A605:108–118CrossRef
    13.Liu ZY, Xiao BL, Wang WG, Ma ZY (2014) Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing. Carbon 69:264–274CrossRef
    14.Hejazi I, Sharif F, Garmabi H (2011) Effect of material and processing parameters on mechanical properties of polypropylene/ethylene–propylene–diene–monomer/clay nanocomposites. Mater Des 32:3803–3809CrossRef
    15.Naderi G, Lafleur PG, Dubois C (2008) The influence of matrix viscosity and composition on the morphology, rheology, and mechanical properties of thermoplastic elastomer nanocomposites based on EPDM/PP. Polym Compos 29:1301–1309CrossRef
    16.Thompson A, Marczynski E, Amorim CL, Crespo JS, Giacomelli C, Bianchi O, Teixeira SR (2009) Morphology and properties of a PP/EPDM/nanoclay composite. https://​inis.​iaea.​org/​search/​search.​aspx?​orig_​q=​RN:​41123551
    17.Frounchi M, Dadbin S, Salehpour Z, Noferesti M (2006) Gas barrier properties of PP/EPDM blend nanocomposites. J Membr Sci 282:142–148CrossRef
    18.Alyali SH, Mostafapour A, Azarsa E (2012) Fabrication of PP/Al2O3 surface nanocomposite via novel friction stir processing approach. Int J Adv Eng Technol 3:598–605
    19.Pahlavanpour M, Moussaddy H, Ghossein E, Hubert P, Lévesque M (2013) Prediction of elastic properties in polymer–clay nanocomposites: analytical homogenization methods and 3D finite element modeling. Comput Mater Sci 79:206–215CrossRef
    20.Wang W, Tang L, Qu B (2003) Mechanical properties and morphological structures of short glass fiber reinforced PP/EPDM composite. Eur Polym J 39:2129–2134CrossRef
    21.Chen Y, Xu CH, Cao L, Wang Y, Cao X (2012) PP/EPDM-based dynamically vulcanized thermoplastic olefin with zinc dimethacrylate: preparation, rheology, morphology, crystallization and mechanical properties. Polym Test 31:728–736CrossRef
    22.Sridevi K, Soundararajan S, Palanivelu K (2011) Studies on mechanical, physical and thermal properties and characterization of nanocomposites of PP/EPDM blend. J Polym Mater 28:171–185
    23.Chiu F, Yen HZ, Chen C (2010) Phase morphology and physical properties of PP/HDPE/organoclay (nano) composites with and without a maleated EPDM as a compatibilizer. Polym Test 29:706–716CrossRef
    24.Rane AV, Abitha VK (2015) Study of mechanical, thermal and microstructural properties of EPDM/polypropylene/nano clay composites with variable compatibilizer dosage. J Mater Environ Sci 6:60–69
    25.Montgomery D (2001) Design and analysis of experiments. John Wiley, New York
    26.Solouk A, Solati M, Najarian S, Mirzadeh H, Seifalian A (2011) Optimization of acrylic acid grafting onto POSS-PCU nanocomposite using response surface methodology. Iran Polym J 20:91–107
    27.Olabi AG, Benyounis KY, Hashmi MSJ (2007) Application of response surface methodology in describing the residual stress distribution in CO2 laser welding of AISI304. Strain 43:37–46CrossRef
    28.Akhtar MN, Sulong A, Karim S, Azhari CH, Raza MR (2015) Evaluation of thermal, morphological and mechanical properties of PMMA/NaCl/DMF electrospun nanofibers: an investigation through surface methodology approach. Iran Polym J 24:1025–1038CrossRef
    29.Schmidt H, Hattel J, Wert J (2004) An analytical model for the heat generation in friction stir welding. Model Simul Mater Sci Eng 12:143–157CrossRef
    30.Mishra JK, Hwang KJ, Ha CS (2005) Preparation, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride modified polypropylene as a compatibilizer. Polymer 46:1995–2002CrossRef
  • 作者单位:M. R. Nakhaei (1)
    G. Naderi (2)
    A. Mostafapour (1)

    1. Faculty of Mechanical Engineering, Tabriz University, Tabriz, Iran
    2. Iran Polymer and Petrochemical Institute, Tehran, Iran
  • 刊物主题:Polymer Sciences; Ceramics, Glass, Composites, Natural Methods;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1735-5265
文摘
Nanocomposites-based on polypropylene (PP), ethylene-propylene diene monomer (EPDM) and Cloisite 15A have wide applications in automotive and aerospace industries and medical apparatus due to their excellent mechanical, thermal and chemical properties. In this study, a nanocomposite of PP/EPDM/nanoclay containing PP (77 wt%), EPDM (20 wt%) and nanoclay (3 wt%) was fabricated by friction stir processing (FSP) method. X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry and tensile testing were performed to determine the morphology and tensile properties of this nanocomposite. The Box-Behnken design was applied to investigate the effect of the process parameters such as tool rotational speed, traverse speed and shoulder temperature on the tensile properties of the nanocomposite. The results showed that the tensile strength increased from 15.8 to 18.2 MPa with increasing the tool rotational speed and shoulder temperature while the elongation-at-break dropped from 46 to 22 %. A maximum tensile strength of 17.6 MPa and a minimum elongation-at-break of 26 % were obtained at the traverse speed of 40 mm/min when the rotational speed and shoulder temperature were at the central levels themselves. The prediction models showed that when the tool rotational speed, traverse speed and shoulder temperature were set, in the given order, as 1200 rpm, 45.65 mm/min and 113.65 °C, a simultaneous maximization of tensile strength of 16.03 MPa and elongation-at-break of 46.41 % was obtained. Keywords PP/EPDM/nanoclay nanocomposites Friction stir processing Tensile strength Elongation X-ray diffraction

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700