Ground-State Solutions for Asymptotically Cubic Schrödinger–Maxwell Equations
详细信息    查看全文
文摘
In this paper, using variational methods and critical point theory, we study the existence of ground-state solutions for the following nonlinear Schrödinger–Maxwell equations$$\left\{\begin{array}{l@{\quad}l} -\triangle u + V(x)u + \phi u = f(x, u), & {\rm in}\, \mathbb{R}^{3},\\ -\triangle\phi = 4\pi u^{2}, & {\rm in} \, \mathbb{R}^{3},\end{array}\right. $$ (NSM)where f is asymptotically cubic, V 1-periodic in each of \({x_1, x_2, x_3}\) and \({\underline{V}:= {\rm inf}_{x\in\mathbb{R}^3}V(x) > 0}\). Under some more assumptions on V and f, we develop a direct and simple method to find ground-state solutions for \({(\mathrm{NSM})}\). The main idea is to find a minimizing (PS) sequence for the energy functional outside the Nehari manifold \({\mathcal{N}}\) using the diagonal method. This seems to be the first result for \({(\mathrm{NSM})}\) satisfying the assumptions (V) and (N).KeywordsSchrödinger–Maxwell equationsground-state solutionNehari manifoldasymptotically cubicMathematics Subject Classification35J2035J2535J60References1.Adams, R.A., Fournier, J.F.: Sobole Spaces, 2nd edn. Academic Press, New York (2003)2.Ambrosetti A., Ruiz D.: Multiple bound states for the Schrödinger–Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008)MathSciNetMATHCrossRefGoogle Scholar3.Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)MathSciNetMATHCrossRefGoogle Scholar4.Azzollini A., Pomponio A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)MathSciNetMATHCrossRefGoogle Scholar5.Azzollini A., d’Avenia P.: On a system involving a critically growing nonlinearity. J. Math. Anal. Appl. 387(1), 433–438 (2012)MathSciNetMATHCrossRefGoogle Scholar6.Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on \({{\mathbb{R}}^N}\). Commun. Partial Differ. Equ. 20, 1725–1741 (1995)7.Bartsch, T., Wang, Z.-Q., Willem, M.: The Dirichlet problem for superlinear elliptic equations. In: Chipot, M., Quittner P. (eds.) Handbook of Differential Equations—Stationary Partial Differential Equations, vol. 2, pp. 1–5. Elsevier (Chapter 1) (2005)8.Benci V., Fortunato D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)MathSciNetMATHGoogle Scholar9.Benci V., Fortunato D.: Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)MathSciNetMATHCrossRefGoogle Scholar10.Berestycki H, Lions PL: Nonlinear scalar field equatios. I—existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)MathSciNetMATHGoogle Scholar11.Chen, P., Tian, C.: Infinitely many solutions for Schrödinger–Maxwell equations with indefinite sign subquadratic potentials. Appl. Math. Comput. 226(1), 492–50212.Chen S.-J., Tang C.-L.: High energy solutions for the superlinear Schrödinger–Maxwell equations. Nonlinear Anal. 71, 4927–4934 (2009)MathSciNetMATHCrossRefGoogle Scholar13.Coclite G.M.: A multiplicity result for the nonlinear Schrödinger–Maxwell equations. Commun. Appl. Anal. 7, 417–423 (2003)MathSciNetMATHGoogle Scholar14.Coclite G., Georgiev V.: Solitary waves for Maxwell–Schrödinger equations. Electron. J. Differ. Equ. 94, 1–31 (2004)MathSciNetMATHGoogle Scholar15.D’Aprile T.: Non-radially symmetric solution of the nonlinear Schrödinger equation coupled with Maxwell equations. Adv. Nonlinear Stud. 2, 177–192 (2002)MathSciNetGoogle Scholar16.D’Aprile T., Mugnai D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations. Proc. R. Soc. Edinb. Sect. A 134, 893–906 (2004)MathSciNetMATHCrossRefGoogle Scholar17.D’Aprile T., Mugnai D.: Non-existence results for the coupled Klein–Gordon–Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)MathSciNetMATHGoogle Scholar18.D’Aprile T., Wei J.: Standing waves in the Maxwell–Schrödinger equation and an optimal configuration problem. Calc. Var. Partial Differ. Equ. 25, 105–137 (2006)MathSciNetMATHCrossRefGoogle Scholar19.D’Aprile T.T., Wei J.: On bound states concentrating on spheres for the Maxwell–Schrödinger equation. SIAM J. Math. Anal. 37, 321–342 (2005)MathSciNetMATHCrossRefGoogle Scholar20.Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)21.Huang W., Tang X.H.: The existence of infinitely many solutions for the nonlinear Schrödinger–Maxwell equations. Results Math. 65(1), 223–234 (2014)MathSciNetMATHCrossRefGoogle Scholar22.Jiang, Y., Wang, Z., Zhou, H.-S.: Multiple solutions for a nonhomogeneous Schrödinger–Maxwell system in \({\mathbb{R}^3}\). Nonlinear Anal. Theory Methods Appl. 83, 50–57 (2013)23.Kikuchi H.: On the existence of solution for elliptic system related to the Maxwell–Schrödinger equations. Nonlinear Anal. 27, 1445–1456 (2007)MathSciNetMATHCrossRefGoogle Scholar24.Kritály A., Repovš D.: On the Schrödinger–Maxwell system involving sublinear terms. Nonlinear Anal. Real World Appl. 13, 213–223 (2012)MathSciNetMATHCrossRefGoogle Scholar25.Li Q., Su H., Wei Z.: Existence of infinitely many large solutions for the nonlinear Schrödinger–Maxwell equations. Nonlinear Anal. 72, 4264–4270 (2010)MathSciNetMATHCrossRefGoogle Scholar26.Poho\({\check{z}}\)aev, S.I.: On the eigenfunctions of the equation \({\triangle{\rm u}+\lambda{\rm f(u)} = 0}\). Sov. Math. Dokl. 5, 1408–1411 (1965)27.Pucci P., Serrin J.: A general variational identity. Indiana Univ. Math. J. 35(3), 681–703 (1986)MathSciNetMATHCrossRefGoogle Scholar28.Ruiz D.: Semiclassical states for coupled Schrödinger–Maxwell equations concentration around a sphere. Math. Models Methods Appl. Sci. 15, 141–164 (2005)MathSciNetMATHCrossRefGoogle Scholar29.Ruiz D.: The Schrödinger–Possion equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)MathSciNetMATHCrossRefGoogle Scholar30.Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 3rd edn. Springer, Berlin (2000)31.Sun J.: Infinitely many solutions for a class of sublinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 390, 514–522 (2012)MathSciNetMATHCrossRefGoogle Scholar32.Sun J., Chen H., Nieto J.J.: On ground state solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 252(5), 3365–3380 (2012)MathSciNetMATHCrossRefGoogle Scholar33.Tang X.H.: Non-Nehari manifold method for superlinear Schrödinger equation. Taiwan. J. Math. 18(6), 1957–1979 (2014)CrossRefGoogle Scholar34.Tang X.H.: Non-Nehari manifold method for asymptotically linear Schrödinger equation. J. Aust. Math. Soc. 98(01), 104–116 (2015)MathSciNetMATHCrossRefGoogle Scholar35.Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)36.Yang M., Shen Z., Ding Y.: Multiple semiclassical solutions for the nonlinear Maxwell–Schrödinger system. Nonlinear Anal. 71, 730–739 (2009)MathSciNetMATHCrossRefGoogle Scholar37.Yang M., Zhao F., Ding Y.: On the existence of solutions for Schrödinger–Maxwell systems in \({\mathbb{R}^3}\). Rocky Mt. J. Math. 42(5), 1655–1674 (2012)MathSciNetMATHCrossRefGoogle Scholar38.Yang M., Ding Y.: Semiclassical solutions for nonlinear Schrödinger–Maxwell equations. Sci. Sin. Math. 40, 517–620 (2010)Google Scholar39.Yosida, K.: Functional Analysis, 6th edn. Springer-Verlag, Berlin (1999)40.Zou W.: Variant fountain theorems and their applications. Manuscr. Math. 104, 343–358 (2001)MathSciNetMATHCrossRefGoogle ScholarCopyright information© Springer International Publishing 2016Authors and AffiliationsWen-nian Huang1Email authorX. H. Tang21.School of Mathematics and StatisticsGuangxi Normal UniversityGuilinPeople’s Republic of China2.School of Mathematics and StatisticsCentral South UniversityChangshaPeople’s Republic of China About this article CrossMark Print ISSN 1660-5446 Online ISSN 1660-5454 Publisher Name Springer International Publishing About this journal Reprints and Permissions Article actions function trackAddToCart() { var buyBoxPixel = new webtrekkV3({ trackDomain: "springergmbh01.webtrekk.net", trackId: "196033507532344", domain: "link.springer.com", contentId: "springer_com.buybox", product: "10.1007/s00009-016-0697-5_Ground-State Solutions for Asympto", productStatus: "add", productCategory : { 1 : "ppv" }, customEcommerceParameter : { 9 : "link.springer.com" } }); buyBoxPixel.sendinfo(); } function trackSubscription() { var subscription = new webtrekkV3({ trackDomain: "springergmbh01.webtrekk.net", trackId: "196033507532344", domain: "link.springer.com", contentId: "springer_com.buybox" }); subscription.sendinfo({linkId: "inst. subscription info"}); } window.addEventListener("load", function(event) { var viewPage = new webtrekkV3({ trackDomain: "springergmbh01.webtrekk.net", trackId: "196033507532344", domain: "link.springer.com", contentId: "SL-article", product: "10.1007/s00009-016-0697-5_Ground-State Solutions for Asympto", productStatus: "view", productCategory : { 1 : "ppv" }, customEcommerceParameter : { 9 : "link.springer.com" } }); viewPage.sendinfo(); }); Log in to check your access to this article Buy (PDF)EUR 34,95 Unlimited access to full article Instant download (PDF) Price includes local sales tax if applicable Find out about institutional subscriptions Export citation .RIS Papers Reference Manager RefWorks Zotero .ENW EndNote .BIB BibTeX JabRef Mendeley Share article Email Facebook Twitter LinkedIn Cookies We use cookies to improve your experience with our site. More information Accept Over 10 million scientific documents at your fingertips

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700