On the Numerical Controllability of the Two-Dimensional Heat, Stokes and Navier–Stokes Equations
详细信息    查看全文
文摘
The aim of this work is to present some strategies to solve numerically controllability problems for the two-dimensional heat equation, the Stokes equations and the Navier–Stokes equations with Dirichlet boundary conditions. The main idea is to adapt the Fursikov–Imanuvilov formulation, see Fursikov and Imanuvilov (Controllability of Evolutions Equations, Lectures Notes Series, vol 34, Seoul National University, 1996); this approach has been followed recently for the one-dimensional heat equation by the first two authors. More precisely, we minimize over the class of admissible null controls a functional that involves weighted integrals of the state and the control, with weights that blow up near the final time. The associated optimality conditions can be viewed as a differential system in the three variables \(x_1\), \(x_2\) and t that is second-order in time and fourth-order in space, completed with appropriate boundary conditions. We present several mixed formulations of the problems and, then, associated mixed finite element Lagrangian approximations that are relatively easy to handle. Finally, we exhibit some numerical experiments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700