Prey capture behavior in three Neotropical armored harvestmen (Arachnida, Opiliones)
详细信息    查看全文
  • 作者:Thaiany M. Costa ; Norton F. S. Silva ; Rodrigo H. Willemart
  • 关键词:Detection ; Foraging ; Handling ; Prey capture ; Gonyleptidae ; Cosmetidae
  • 刊名:Journal of Ethology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:34
  • 期:2
  • 页码:183-190
  • 全文大小:1,291 KB
  • 参考文献:Acosta LE, Machado G (2007) Diet and Foraging. In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of Opiliones. Harvard University Press, Cambridge, pp 309–338
    Andrade R, Gnaspini P (2002) Feeding in Maxchernes iporangae (Pseudoscorpiones, Chernetidae) in captivity. J Arachnol 30:613–617CrossRef
    Balme G, Hunter L, Slotow R (2007) Feeding habitat selection by hunting leopards Panthera pardus in a woodland savanna: prey catchability versus abundance. Anim Behav 71:589–598CrossRef
    Barth FG (2002) A spider’s world: senses and behavior. Springer, BerlinCrossRef
    Bartos M, Szczepko K (2012) Development of prey-specific predatory behavior in a jumping spider (Araneae: Salticidae). J Arachnol 40:228–233CrossRef
    Bothma J, Van Rooyen N, Le Riche E (1997) Multivariate analysis of the hunting tactics of Kalahari leopards. Koedoe 40:41–56CrossRef
    Bourass K, Léger JF, Zaime A, Qninba A, Rguibi H, El Agbani MA, Benhoussa A, Hingrat Y (2012) Observations on the diet of the North African houbara bustard during the non
    eeding season. J Arid Environ 82:53–59CrossRef
    Brownell P (2001) Sensory ecology and orientational behaviors. In: Brownell P, Polis G (eds) Scorpion biology and research. Oxford University Press, Oxford, pp 159–183
    Brownell P, Farley RD (1979) Prey-localizing behaviour of the nocturnal desert scorpion, Paruroctonus mesaensis: orientation to substrate vibrations. Anim Behav 27:185–193CrossRef
    Cooper WE (1995) Foraging mode, prey chemical discrimination, and phylogeny in lizards. Anim Behav 50:973–985CrossRef
    Costa TM, Willemart RH (2013) First experimental evidence that a harvestman (Arachnida: Opiliones) detects odors of non-rotten dead prey by olfaction. Zoologia 30:359–361CrossRef
    Dias BC, Willemart RH (2013) The effectiveness of post-contact defenses in a prey with no pre-contact detection. Zoology 116:168–174CrossRef PubMed
    Dor A, Calme S, Henaut Y (2011) Predatory interactions between Centruroides scorpions and the tarantula Brachypelma vagans. J Arachnol 39:201–204CrossRef
    Dunn SJ (2004) Foraging and prey handling behavior of the generalist Thamnophis hammondii offered various prey types. Bios 75:58–64CrossRef
    Ferreira RL, Silva WC, Vieira VC, Silva MS (2011) Aspects of the behavior and reproduction of Mastigoproctus brasilianus Koch, 1843, (Arachnida: Uropygi: Telyphonidae). Rev Etol 10:3–11
    Foelix R (2013) Biology of spiders. Oxford University Press, New York
    Gnaspini P (1996) Population ecology of Goniosoma spelaeum, a cavernicolous harvestman from southeastern Brazil (Arachnida: Opiliones: Gonyleptidae). J Zool 239:417–435CrossRef
    Hashimoto K, Hayashi F (2014) Cantharidin world in nature: a concealed arthropod assemblage with interactions via the terpenoid cantharidin. Entomol Sci 17:388–395CrossRef
    Kaltsas D, Stathi I, Mylonas M (2008) The foraging activity of Mesobuthus gibbosus (Scorpiones: Buthidae) in central and south Aegean archipelago. J Nat Hist 42:513–527CrossRef
    Krapf D (1986) Contact chemoreception of prey in hunting scorpions (Arachnida: Scorpiones). Zool Anz 217:119–129
    Kupczik K, Stynder DD (2012) Tooth root morphology as an indicator for dietary specialization in carnivores (Mammalia: Carnivora). Biol J Linn Soc 105:456–471CrossRef
    Lanszki J, Heltai M, Szabó L (2006) Feeding habits and trophic niche overlap between sympatric golden jackal (Canis aureus) and red fox (Vulpes vulpes) in the Pannonian ecoregion (Hungary). Can J Zool 84:1647–1656CrossRef
    Machado G, Raimundo RLG, Oliveira PS (2000) Daily activity schedule, gregariousness, and defensive behaviour in the Neotropical harvestman Goniosoma longipes (Opiliones: Gonyleptidae). J Nat Hist 34:587–596CrossRef
    Macías-Ordóñez R (1997) The mating system of Leiobunum vittatum Say, 1821 (Arachnida: Opiliones: Palpatores): resource defense polygyny in the striped harvestman. PhD thesis, Lehigh University, Bethlehem
    Martinoli A, Preatoni DG, Chiarenzi B, Wauters LA, Tosi G (2001) Diet of stoats (Mustela erminea) in an Alpine habitat: the importance of fruit consumption in summer. Acta Oecol 22:45–53CrossRef
    Meyer-Rochow VB, Liddle AL (1988) Structure and function of the eyes of two species of opilionid from New Zealand glow-worm caves (Megalopsalis tumida: Palpatores, and Hendea myersi cavernicola: Laniatores). Proc R Soc Lond B 233:293–319CrossRef
    Phillipson J (1960) A contribution to the feeding biology of Mitopus morio (Phalangida). J Anim Ecol 29:35–43CrossRef
    Punzo F (1998) The Biology of Camel-spiders (Arachnida, Solifugae). Kluwer, BostonCrossRef
    Santer RD, Hebets EA (2009) Prey capture by the whip spider Phrynus marginemaulatus CL Koch. J Arachnol 37:109–112CrossRef
    Santos FH, Gnaspini P (2002) Notes on the foraging behavior of the Brazilian cave harvestman Goniosoma spelaeum (Opiliones, Gonyleptidae). J Arachnol 30:177–180CrossRef
    Sharma P, Giribet G (2011) The evolutionary and biogeographic history of the armoured harvestmen—Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebr Syst 25:106–142CrossRef
    Silva NFS, Willemart RH (2015) Foraging, oviposition sites and notes on the natural history of the harvestman Heteromitobates discolor (Opiliones, Gonyleptidae). Biota Neotrop 15:1–5
    Slansky F, Rodriguez JG (1987) Nutritional ecology of insects, mites, spiders, and related invertebrates. Wiley, New York
    Souza ES, Willemart RH (2011) Harvest-ironman: heavy armature, and not its defensive secretions, protects a harvestman against a spider. Anim Behav 81:127–133CrossRef
    Taylor LA, Maier EB, Byrne KJ, Amin Z, Morehouse NI (2014) Colour use by tiny predators: jumping spiders show colour biases during foraging. Anim Behav 90:149–157CrossRef
    Therrien F (2005) Mandibular force profiles of extant carnivorans and implications for the feeding behaviour of extinct predators. J Zool 267:249–270CrossRef
    Vincent SE, Shine R, Brown GP (2005) Does foraging mode influence sensory modalities for prey detection in male and female filesnakes, Acrochordus arafurae? Anim Behav 70:715–721CrossRef
    Wall M, Shine R (2008) The relationship between foraging ecology and lizard chemoreception: can a snake analogue (Burton’s legless lizard, Lialis burtonis) detect prey scent? Ethology 115:264–272CrossRef
    Weygoldt P (2000) Whip spiders (Chelicerata: Amblypygi): their biology, morphology and systematics. Apollo, Stenstrup
    Willemart RH, Chelini MC (2007) Experimental demonstration of close-range olfaction and contact chemoreception in the Brazilian harvestman Iporangaia pustulosa. Entomol Exp Appl 123:73–79CrossRef
    Willemart RH, Farine JP, Gnaspini P (2009) Sensory biology of Phalangida harvestmen (Arachnida, Opiliones): a review, with new morphological data on 18 species. Acta Zool 90:209–227CrossRef
    Willemart RH, Santer RD, Spence AJ, Hebets EA (2011) A sticky situation: solifugids (Arachnida, Solifugae) use adhesive organs on their pedipalps for prey capture. J Ethol 29:177–180CrossRef
    Wolff OJ, Schönhofer AL, Schaber CF, Gorb SN (2014) Gluing the ‘unwettable’: soil-dwelling harvestmen use viscoelastic fluids for capturing springtails. J Exp Biol 217:3535–3544CrossRef PubMed
    Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New Jersey
  • 作者单位:Thaiany M. Costa (1) (3)
    Norton F. S. Silva (1) (2)
    Rodrigo H. Willemart (1) (2) (3)

    1. Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo, SP, 03828-000, Brazil
    3. Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, São Paulo, SP, 05508-090, Brazil
    2. Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Rua Professor Artur Riedel, 275, Jardim Eldorado, Diadema, SP, 09972-270, Brazil
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Zoology
    Behavioural Sciences
    Animal Ecology
    Evolutionary Biology
    Neurosciences
  • 出版者:Springer Japan
  • ISSN:1439-5444
文摘
Acquiring food requires success in all the distinct phases of foraging, among which are detecting, capturing and handling prey. We have looked at prey detection, capturing and handling in three species of armored harvestmen differing in leg length and pedipalp morphology: Discocyrtus pectinifemur, Heteromitobates discolor and Gryne perlata. We recorded males and females in captivity capturing 0.5- to 0.7-mm-long immature crickets without legs III and provide the first detailed description of prey capture in harvestmen of the suborder Laniatores. We have shown that these three species can detect live prey without touching it but only at close range (<1 cm). The success at the strike phase was: 27.2 % for D. pectinifemur, 50 % for G. perlata and 72.7 % for H. discolor. Combining the probability of detection without contact with that of successful capturing of the two-legged cricket, the success rate of G. perlata, D. pectinifemur and H. discolor were, respectively, 2, 21 and 32 %. Only one cricket escaped from within the pedipalps of the harvestmen (G. perlata, smooth pedipalps). The long-legged H. discolor, which forage in open areas, had a higher success and, after detection, took less time to attack crickets in open areas. Compared to other arachnids, prey detection happens at close range and capture success in Laniatores is low. However, omnivory probably minimizes these limitations in capturing live prey.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700