Phylogeography of the harvestman genus Metasiro (Arthropoda, Arachnida, Opiliones) reveals a potential solution to the Pangean paradox
详细信息    查看全文
  • 作者:Ronald M. Clouse ; Prashant P. Sharma ; Jessie C. Stuart…
  • 关键词:Apalachicola River ; Appalachia ; Cyphophthalmi ; Hydrochory ; Pangea ; Vicariance
  • 刊名:Organisms Diversity & Evolution
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 页码:167-184
  • 全文大小:2,269 KB
  • 参考文献:Boyer, S. L., & Giribet, G. (2007). A new model Gondwanan taxon: systematics and biogeography of the harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi), with a taxonomic revision of genera from Australia and New Zealand. Cladistics, 23(4), 337–361.CrossRef
    Boyer, S. L., & Giribet, G. (2009). Welcome back New Zealand: regional biogeography and Gondwanan origin of three endemic genera of mite harvestmen (Arachnida, Opiliones, Cyphophthalmi). Journal of Biogeography, 36, 1084–1099.
    Boyer, S. L., Baker, J. M., & Giribet, G. (2007a). Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy. Molecular Ecology, 16, 4999–5016.CrossRef PubMed
    Boyer, S. L., Clouse, R. M., Benavides, L. R., Sharma, P., Schwendinger, P. J., Karunarathna, I., et al. (2007b). Biogeography of the world: a case study from cyphophthalmid Opiliones, a globally distributed group of arachnids. Journal of Biogeography, 34, 2070–2085.CrossRef
    Bragagnolo, C., Pinto-da-Rocha, R., Manuel Antunes, J., & Clouse, R. M. (2015). Phylogenetics and phylogeography of a long-legged harvestman (Arachnida: Opiliones) in the Brazilian Atlantic Rain Forest reveals poor dispersal, low diversity, and extensive mitochondrial introgression. Invertebrate Systematics, in press.
    Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S., & Bremer, K. (2007). Estimating divergence times in large phylogenetic trees. Systematic Biology, 56(5), 741–752.CrossRef PubMed
    Brooks, M. (1965). The Appalachians (Vol. 1, The Naturalist’s America). Boston: Houghton Mifflin Company.
    Burns, R. M., & Honkala, B. H. (1990). Silvics of North America: 1. Conifers; 2. Hardwoods. Agriculture Handbook 654 (Vol. 2). Washington, DC: U.S. Department of Agriculture, Forest Service.
    Calderon, I., Ortega, N., Duran, S., Becerro, M., Pascual, M., & Turon, X. (2007). Finding the relevant scale: clonality and genetic structure in a marine invertebrate (Crambe crambe, Porifera). Molecular Ecology, 16(9), 1799–1810.CrossRef PubMed
    Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657–1659.CrossRef PubMed
    Clouse, R. M., & Giribet, G. (2007). Across Lydekker’s Line—first report of mite harvestmen (Opiliones : Cyphophthalmi : Stylocellidae) from New Guinea. Invertebrate Systematics, 21(3), 207–227.CrossRef
    Clouse, R. M., & Giribet, G. (2010). When Thailand was an island—the phylogeny and biogeography of mite harvestmen (Opiliones, Cyphophthalmi, Stylocellidae) in Southeast Asia. Journal of Biogeography, 37(6), 1114–1130.CrossRef
    Clouse, R. M., & Wheeler, W. C. (2014). Descriptions of two new, cryptic species of Metasiro (Arachnida: Opiliones: Cyphophthalmi: Neogoveidae) from South Carolina, USA, including a discussion of mitochondrial mutation rates. Zootaxa, 3814(2), 177–201.CrossRef PubMed
    Clouse, R. M., Janda, M., Blanchard, B., Sharma, P., Hoffmann, B. D., Andersen, A. N., et al. (2015). Molecular phylogeny of Indo-Pacific carpenter ants (Hymenoptera: Formicidae, Camponotus) reveals waves of dispersal and colonization from diverse source areas. Cladistics, 31, 424–437.
    Colwell, R. K. (2004–2011). Biota 2: the biodiversity database manager. Sunderland: Sinauer Associates.
    Crisp, M. D., Trewick, S. A., & Cook, L. G. (2011). Hypothesis testing in biogeography. Trends in Ecology and Evolution, 26, 66–72.CrossRef PubMed
    Dallmeyer, R. D. (1989). Contrasting accreted terranes in the southern Appalachian Orogen, basement beneath the Atlantic and Gulf Coastal Plains, and West African orogens. Precambrian Research, 42, 387–409.CrossRef
    Davis, N. W. (1933). A new opilionid from Florida (Arachnida, Cyphophthalmi). Journal of the New York Entomological Society, 41(1/2), 49–53.
    Davis, M. B., & Shaw, R. G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science, 292(5517), 673–679.CrossRef PubMed
    de Bivort, B. L., Clouse, R., & Giribet, G. (2012). A cladistic reconstruction of the ancestral mite harvestman (Arachnida, Opiliones, Cyphophthalmi): portrait of a Paleozoic detritivore. Cladistics, 28(6), 582–597.CrossRef
    de Rouw, A., Douillet, M., Tjiantahosong, H., Ribolzi, O., & Thiébaux, J.-P. (2007). Dispersal of weed seeds by erosion and flow processes in upland fields. In L. Gebbie, A. Glendinning, R. Lefroy-Braun, & M. Victor (Eds.), International Conference on Sustainable Sloping Lands and Watershed Management: Linking Research to Strengthen Upland Policies and Practices, Luang Prabang, Lao PDR, December 12–15, 2006 (pp. 156–166). Vientiane: National Agriculture and Forestry Research Institute.
    Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.CrossRef PubMed PubMedCentral
    Duckworth, R. A., & Badyaev, A. V. (2007). Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proceedings of the National Academy of Sciences, 104(38), 15017–15022.CrossRef
    Dunlop, J. A. (2010). Geological history and phylogeny of Chelicerata. Arthropod Structure & Development, 39, 124–142.CrossRef
    Dunlop, J. A., Anderson, L. I., Kerp, H., & Hass, H. (2004). A harvestman (Arachnida : Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, 341–354.
    Economo, E. P., Sarnat, E. M., Janda, M., Clouse, R., Klimov, P., Fischer, G., et al. (2015). Breaking out of biogeographic modules: range expansion and taxon cycles in the hyperdiverse ant genus Pheidole. Journal of Biogeography, in press.
    Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797.CrossRef PubMed PubMedCentral
    Excoffier, L., & Heckel, G. (2006). Computer programs for population genetics data analysis: a survival guide. Nature Reviews Genetics, 7, 745–758.CrossRef PubMed
    Fernández, R., & Giribet, G. (2014). Phylogeography and species delimitation in the New Zealand endemic, genetically hypervariable harvestman species, Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi). Invertebrate Systematics, 28, 401–414.
    Garwood, R. J., Sharma, P. P., Dunlop, J. A., & Giribet, G. (2014). A Palaeozoic stem-group to mite harvestmen revealed through integration of phylogenetics and development. Current Biology, 24(9), 1017–1023.CrossRef PubMed
    Giribet, G. (2000). Catalogue of the Cyphophthalmi of the world (Arachnida, Opiliones). Revista Iberica de Aracnologia, 2, 49–76.
    Giribet, G., & Kury, A. B. (2007). Phylogeny and biogeography. In R. Pinto-da-Rocha, G. Machado, & G. Giribet (Eds.), Harvestmen: the biology of Opiliones (pp. 62–87). Cambridge: Harvard University Press.
    Giribet, G., Sharma, P. P., Benavides, L., Boyer, S., Clouse, R., de Bivort, B. L., et al. (2012). Evolutionary and biogeographic history of the harvestman suborder Cyphophthalmi (Arachnida, Opiliones)—an ancient and global group of arachnids. Biological Journal of the Linnean Society, 105(1), 92–130.CrossRef
    Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.CrossRef
    Gotelli, N. J., & Arnett, A. E. (2000). Biogeographic effects of red fire ant invasion. Ecology Letters, 3(4), 257–261.CrossRef
    Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2), 221–224.CrossRef PubMed
    Graur, D., & Martin, W. (2004). Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics, 20(2), 80–86.CrossRef PubMed
    Guillot, G., Mortier, F., & Estoup, A. (2005). Geneland: a computer package for landscape genetics. Molecular Ecology Notes, 5(3), 712–715.CrossRef
    Hedin, M., Starrett, J., Akhter, S., Schönhofer, A. L., & Shultz, J. W. (2012). Phylogenomic resolution of Paleozoic divergences in harvestmen (Arachnida, Opiliones) via analysis of next-generation transcriptome data. PLoS ONE, 7(8), e42888.CrossRef PubMed PubMedCentral
    Hudson, R. R., Slatkin, M., & Maddison, W. P. (1992). Estimation of levels of gene flow from DNA sequence data. Genetics, 132, 583–589.PubMed PubMedCentral
    Hyslop, J., & Trowsdale, S. (2012). A review of hydrochory (seed dispersal by water) with implications for riparian rehabilitation. Journal of Hydrology. New Zealand, 51(2), 137–152.
    Juberthie, C. (1964). Recherches sur la biologie des Opilions. Toulouse: Université de Toulouse.
    Juberthie, C. (1988). Les Opilions Cyphophthalmes: biogéographie, vitesse d’évolution, périodes de colonisation du milieu souterrain. TUB-Dokumentation Kongresse und Tagungen, Berlin, 38, 303–308.
    Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066.CrossRef PubMed PubMedCentral
    Kuhner, M. K. (2006). LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics, 22(6), 768–770.CrossRef PubMed
    Kumekawa, Y., Ito, K., Tsurusaki, N., Hayakawa, H., Ohga, K., Yokoyama, J., et al. (2014). Phylogeography of the laniatorid harvestman Pseudobiantes japonicus and its allied species (Arachnida: Opiliones: Laniatores: Epedanidae). Annals of the Entomological Society of America, 107(4), 756–772.CrossRef
    La Sorte, F. A. (2006). Geographical expansion and increased prevalence of common species in avian assemblages: implications for large-scale patterns of species richness. Journal of Biogeography, 33, 1183–1191.CrossRef
    Labandeira, C. C. (2005). Invasion of the continents: cyanobacterial crusts to tree-inhabiting arthropods. Trends in Ecology & Evolution, 20(5), 253–262.CrossRef
    Landis, C. A., Campbell, H. J., Begg, J. G., Mildenhall, D. C., Paterson, A. M., & Trewick, S. A. (2008). The Waipounamu Erosion Surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geological Magazine, 145, 173–197.CrossRef
    Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.CrossRef PubMed
    Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.CrossRef PubMed
    Machado, G., & Macías-Ordóñez, R. (2007). Reproduction. In R. Pinto-da-Rocha, G. Machado, & G. Giribet (Eds.), Harvestmen: the biology of Opiliones (pp. 414–454). Cambridge: Harvard University Press.
    Mao, K., Milne, R. I., Zhang, L., Peng, Y., Liu, J., Thomas, P., et al. (2012). Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences, 109(20), 7793–7798.CrossRef
    Matos-Maraví, P., Clouse, R. M., Sarnat, E. M., Economo, E. P., LaPolla, J. S., Borovanska, M., et al. (2015). An ant genus-group (Prenolepis) illuminates the drivers of insect diversification in the Indo-Pacific. Journal of Biogeography, in press.
    McCallum, B. E., & Gotvald, A. J. (2010). Historic flooding in Northern Georgia, September 16–22, 2009. In Interior (Ed.), USGS fact sheet (July 2010 ed.). U.S. Department of the Interior, U.S. Geological Survey.
    Medlock, J., Hansford, K., Schaffner, F., Versteirt, V., Hendrickx, G., Zeller, H., et al. (2012). A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector-Borne and Zoonotic Diseases, 12(6), 435–447.CrossRef PubMed PubMedCentral
    Merritt, D. M., & Wohl, E. E. (2002). Processes governing hydrochory along rivers: hydraulics, hydrology, and dispersal phenology. Ecological Applications, 12(4), 1071–1087.CrossRef
    Mildenhall, D. C., Mortimer, N., Bassett, K. N., & Kennedy, E. M. (2014). Oligocene paleogeography of New Zealand: maximum marine transgression. New Zealand Journal of Geology and Geophysics, 57(8), 107–109.CrossRef
    Miller, M. A., Pfeiffer, W., & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, Louisiana, November 14, 2010 (pp. 1–8)
    Murienne, J., & Giribet, G. (2009). The Iberian Peninsula: ancient history of a hot spot of mite harvestmen (Arachnida: Opiliones: Cyphophthalmi: Sironidae) diversity. Zoological Journal of the Linnean Society, 156(4), 785–800.CrossRef
    Murienne, J., Benavides, L. R., Prendini, L., Hormiga, G., & Giribet, G. (2013). Forest refugia in Western and Central Africa as ‘museums’ of Mesozoic biodiversity. Biology Letters, 9, 20120932.CrossRef PubMed PubMedCentral
    Murienne, J., Daniels, S. R., Buckley, T. R., Mayer, G., & Giribet, G. (2015). A living fossil tale of Pangaean biogeography. Proceedings of the Royal Society of London B: Biological Sciences, 281(1775), 20132648.CrossRef
    Nathan, R. (2008). Long-distance dispersal of plants. Science, 313(5788), 787–788.
    Neigel, J. E. (2002). Is FST obsolete? Conservation Genetics, 3(2), 167–173.CrossRef
    NIWA. (2010). New Zealand Historic Weather Events Catalog. http://​hwe.​niwa.​co.​nz/​ . Accessed 11 Oct 2012.
    Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.CrossRef PubMed
    Peakall, R., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288–295.CrossRef
    Pearse, D. E., & Crandall, K. A. (2004). Beyond FST: analysis of population genetic data for conservation. Conservation Genetics, 5(5), 585–602.CrossRef
    Popenoe, P., Henry, V. J., & Idris, F. M. (1987). Gulf trough—the Atlantic connection. Geology, 15, 327–332.CrossRef
    R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
    Randazzo, A. F. (1997). The sedimentary platform of Florida: Mesozoic to Cenozoic. In A. F. Randazzo & D. S. Jones (Eds.), The geology of Florida (pp. 39–56). Gainesville: University Press of Florida.
    Ricciardi, A., Neves, R. J., & Rasmussen, J. B. (1998). Impending extinctions of North American freshwater mussels (Unionoida) following the zebra mussel (Dreissena polymorpha) invasion. Journal of Animal Ecology, 67(4), 613–619.CrossRef
    Rowley, D. B., & Pindell, J. L. (1989). End Paleozoic–Early Mesozoic Western Pangean reconstruction and its implications for the distribution of Precambrian and Paleozoic rocks around Meso-America. Precambrian Research, 42, 411–444.CrossRef
    Schönhofer, A. L., McCormack, M., Tsurusaki, N., Martens, J., & Hedin, M. (2013). Molecular phylogeny of the harvestmen genus Sabacon (Arachnida: Opiliones: Dyspnoi) reveals multiple Eocene–Oligocene intercontinental dispersal events in the Holarctic. Molecular Phylogenetics and Evolution, 66, 303–315.CrossRef PubMed
    Sector, D. T., Snoke, A. W., & Dallmeyer, R. D. (1986). Character of the Alleghanian orogeny in the southern Appalachians: part III. Regional tectonic relations. Geological Society of America Bulletin, 97(11), 1345–1353.CrossRef
    Sharma, P., & Giribet, G. (2009). A relict in New Caledonia: phylogenetic relationships of the family Troglosironidae (Opiliones: Cyphophthalmi). Cladistics, 25(3), 279–294.CrossRef
    Sharma, P. P., & Giribet, G. (2011). The evolutionary and biogeographic history of the armoured harvestmen—Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebrate Systematics, 25, 106–142.CrossRef
    Sharma, P. P., & Giribet, G. (2012). Out of the Neotropics: Late Cretaceous colonization of Australasia by American arthropods. Proceedings of the Royal Society B: Biological Sciences, 279, 3501–3509.CrossRef PubMed PubMedCentral
    Sharma, P. P., & Wheeler, W. C. (2013). Revenant clades in historical biogeography: the geology of New Zealand predisposes endemic clades to root age shifts. Journal of Biogeography, 40, 1609–1618.CrossRef
    Sharma, P. P. & Giribet, G. (2014). A revised, dated phylogeny of the arachnid order Opiliones. Frontiers in Genetics, 5, 255.
    Shaul, S., & Graur, D. (2002). Playing chicken (Gallus gallus): methodological inconsistencies of molecular divergence date estimates due to secondary calibration points. Gene, 300, 59–61.CrossRef PubMed
    Smart, G. M., & McKerchar, A. I. (2010). More flood disasters in New Zealand. Journal of Hydrology (NZ), 49(2), 69–78.
    Smith, D. L., & Lord, K. M. (1997). Tectonic evolution and geophysics of the Florida basement. In A. F. Randazzo & D. S. Jones (Eds.), The geology of Florida (pp. 13–26). Gainesville: University Press of Florida.
    Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57(5), 758–771.CrossRef PubMed
    Thomas, S. M., & Hedin, M. (2008). Multigenic phylogeographic divergence in the paleoendemic southern Appalachian opilionid Fumontana deprehendor Shear (Opiliones, Laniatores, Triaenonychidae). Molecular Phylogenetics and Evolution, 46(2), 645–658.CrossRef PubMed
    Varón, A., Sy Vinh, L., & Wheeler, W. C. (2009). POY version 4: phylogenetic analysis using dynamic homologies. Cladistics, 26(1), 72–85.CrossRef
    Vaschetto, L. M., González-Ittig, R. E., Vergara, J., & Acosta, L. E. (2015). High genetic diversity in the harvestman Geraeocormobius sylvarum (Arachnida, Opiliones, Gonyleptidae) from subtropical forests in north-eastern Argentina revealed by mitochondrial DNA sequences. Journal of Zoological Systematics and Evolutionary Research, 53(3), 211–218.
    Wang, R., Wang, J.-F., Qiu, Z.-J., Meng, B., Wan, F.-H., & Wang, Y.-Z. (2011). Multiple mechanisms underlie rapid expansion of an invasive alien plant. New Phytologist, 191, 828–839.CrossRef PubMed
    Watterson, G. A. (1975). On the number of segregating sites in genetical models without recombination. Theoretical Population Biology, 7(2), 256–276.CrossRef PubMed
    Wheeler, W. (1996). Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics, 12(1), 1–9.CrossRef
    White, T. A., Lundy, M. G., Montgomery, W. I., Montgomery, S., Perkins, S. E., Lawton, C., et al. (2012). Range expansion in an invasive small mammal: influence of life-history and habitat quality. Biological Invasions, 14, 2203–2215.CrossRef
    Wilson, T. B., Webb, R. H., & Thompson, T. L. (2001). Mechanisms of range expansion and removal of mesquite (Prosopis spp.) in desert grasslands in the southwestern United States, RMRS-GTR-81. U.S. Forest Service General Technical Report, United States Department of Agriculture, 23 pp.
    Xiong, S., & Nilsson, C. (1997). Dynamics of leaf litter accumulation and its effects on riparian vegetation: a review. The Botanical Review, 63(3), 240–264.CrossRef
    Zatz, C., Werneck, R. M., Macías-Ordóñez, R., & Machado, G. (2011). Alternative mating tactics in dimorphic males of the harvestman Longiperna concolor (Arachnida: Opiliones). Behavioral Ecology and Sociobiology, 65(5), 995–1005.CrossRef
    Zhang, P., & Wake, M. H. (2009). A mitogenomic perspective on the phylogeny and biogeography of living caecilians (Amphibia: Gymnophiona). Molecular Phylogenetics and Evolution, 53, 479–491.CrossRef PubMed
  • 作者单位:Ronald M. Clouse (1) (2)
    Prashant P. Sharma (1) (3)
    Jessie C. Stuart (4)
    Lloyd R. Davis (5)
    Gonzalo Giribet (6)
    Sarah L. Boyer (7)
    Ward C. Wheeler (1)

    1. Division of Invertebrate Zoology, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
    2. Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Blvd., Bioinformatics, Room 224, Charlotte, NC, 28223, USA
    3. Department of Zoology, University of Wisconsin–Madison, 351 Birge Hall, Madison, WI, 53706, USA
    4. Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
    5. 3920 NW 36th Place, Gainesville, FL, 32606, USA
    6. Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
    7. Biology Department, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
  • 刊物主题:Biodiversity; Evolutionary Biology; Developmental Biology; Animal Systematics/Taxonomy/Biogeography; Plant Systematics/Taxonomy/Biogeography;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1618-1077
文摘
At both global and local scales, mite harvestmen (Opiliones, Cyphophthalmi) have been shown to have achieved their current global distribution strictly through vicariance. However, the implicit low dispersal capability of this group does not explain how they expand their ranges and come to occupy enormous landmasses prior to rifting. To investigate at the population level the limited vagility that characterizes the suborder generally, and how its dispersal capacity determines diversification dynamics, range expansion, and historical biogeography, we examined as a test case the phylogeography of the genus Metasiro. This genus consists of three widely separated, morphologically cryptic species that inhabit the Southeastern United States. Distances between sampling sites spanned a range of geographic scales, from 4 m to over 500 km. Population structure was inferred from fragments of six loci (three mitochondrial, three nuclear) amplified from 221 specimens. We tested for population structure and gene flow, constructed a dated phylogeny of the genus, and developed a program for estimating the effective population size with confidence intervals. Individuals of Metasiro americanus demonstrate remarkable population structure at scales of less than 25 m, but populations vary in their haplotypic diversity, and some exhibit evidence of historical gene flow. The estimated timing of cladogenesis within the genus accords closely with the geological history of the North American coastline, and the three species are at the endpoints of large watersheds. This suggests that mite harvestman lineages expand their ranges by hydrochory, providing for the first time a plausible mechanism whereby these animals dispersed across Pangea despite their low vagility in stable environments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700