A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells
详细信息    查看全文
  • 作者:Fatemeh Jamshidi Adegani (1) (2)
    Lida Langroudi (2)
    Ehsan Arefian (2) (3)
    Abbas Shafiee (2) (4)
    Peyman Dinarvand (2)
    Masoud Soleimani (5)
  • 关键词:Pluripotency ; Differentiation ; Mir145 ; Let7g ; Adult stem cells
  • 刊名:Molecular Biology Reports
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:40
  • 期:5
  • 页码:3693-3703
  • 全文大小:496KB
  • 参考文献:1. Chen YC, Tsai KL, Hung CW, Ding DC, duChen LH, Chang YL et al (2011) Induced pluripotent stem cells and regenerative medicine. J Clin Gerontol Geriatrics 2(1):1鈥? CrossRef
    2. Caulfield T, Scott C, Hyun I, Lovell-Badge R, Kato K, Zarzeczny A (2009) Stem cell research policy and iPS cells. Nat Methods 7(1):28鈥?3 meth.f.282">CrossRef
    3. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861鈥?72 CrossRef
    4. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663鈥?76 CrossRef
    5. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917 CrossRef
    6. Narsinh KH, Wu JC (2010) Gene correction in human embryonic and induced pluripotent stem cells: promises and challenges ahead. Molecular therapy: the journal of the American Society of Gene Therapy 18(6):1061 mt.2010.92">CrossRef
    7. Sun N, Longaker MT, Wu JC (2010) Human iPS cell-based therapy: considerations before clinical applications. Cell cycle (Georgetown, Tex) 9(5):880 CrossRef
    8. Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W et al (2009) Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284(26):17634 CrossRef
    9. Chang MY, Kim D, Kim CH, Kang HC, Yang E, Moon JI et al (2010) Direct reprogramming of rat neural precursor cells and fibroblasts into pluripotent stem cells. PLoS ONE 5:e9838 CrossRef
    10. Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C et al (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1(1):46 mcb/mjp003">CrossRef
    11. Sugii S, Kida Y, Kawamura T, Suzuki J, Vassena R, Yin YQ et al (2010) Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc Natl Acad Sci 107(8):3558 CrossRef
    12. Trond Aasen AR, Maria JB, Elena Garreta AC, Federico Gonzalez RV (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276鈥?284 CrossRef
    13. Kim JB, Greber B, Ara煤zo-Bravo MJ, Meyer J, Park KI, Zaehres H et al (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461(7264):649鈥?53 CrossRef
    14. Liu H, Ye Z, Kim Y, Sharkis S, Jang YY (2010) Generation of endoderm derived human induced pluripotent stem cells from primary hepatocytes. Hepatology 51(5):1810鈥?819 CrossRef
    15. Ruiz S, Brennand K, Panopoulos AD, Herrer铆as A, Gage FH, Izpisua-Belmonte JC et al (2010) High-efficient generation of induced pluripotent stem cells from human astrocytes. PLoS ONE 5(12):e15526 CrossRef
    16. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K et al (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321(5889):699 CrossRef
    17. Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G et al (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41(9):968鈥?76 CrossRef
    18. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285鈥?90 CrossRef
    19. Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY et al (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848鈥?55 CrossRef
    20. Zaehres H, Kogler G, Arauzo-Bravo MJ, Bleidissel M, Santourlidis S, Weinhold S et al (2010) Induction of pluripotency in human cord blood unrestricted somatic stem cells. Exp Hematol 38(9):809鈥?18 m.2010.05.009">CrossRef
    21. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9(3):219鈥?30 m2347">CrossRef
    22. Peter M (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell cycle (Georgetown, Tex) 8(6):843 CrossRef
    23. Xu N, Papagiannakopoulos T, Pan G, Thomson J, Kosik K (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137(4):647鈥?58 CrossRef
    24. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al (2007) Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109鈥?123 CrossRef
    25. Carrington J, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301(5631):336 CrossRef
    26. Reinhart B, Slack F, Basson M, Pasquinelli A, Bettinger J, Rougvie A et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901鈥?06 CrossRef
    27. Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320(5872):97 CrossRef
    28. Newman MA, Hammond SM (2010) Lin-28: an early embryonic sentinel that blocks Let-7 biogenesis. Int j Biochem Cell Biol 42(8):1330鈥?333 CrossRef
    29. Marson A, Levine S, Cole M, Frampton G, Brambrink T, Johnstone S et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134(3):521鈥?33 CrossRef
    30. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853 CrossRef
    31. Michael MZ, O鈥機onnor SM, Van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882鈥?91
    32. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401鈥?414 CrossRef
    33. Cordes K, Sheehy N, White M, Berry E, Morton S, Muth A et al (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460(7256):705鈥?10
    34. Hatfield S, Ruohola-Baker H (2008) MicroRNA and stem cell function. Cell Tissue Res 331(1):57鈥?6 CrossRef
    35. Adegani FJ, Langroudi L, Arefian E, Soleimani M (2011) Differentiation microRNAs affect stemness status of USSCs. Iranian Red Crescent Medical Journal 13(10):726
    36. Watt FM, Driskell RR (2010) The therapeutic potential of stem cells. Philosophical Transactions of the Royal Society B 365(1537):155 CrossRef
    37. Gonz谩lez F, Bou茅 S, Belmonte JCI (2011) Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet 12:231鈥?42 CrossRef
    38. K枚gler G, Sensken S, Airey JA, Trapp T, M眉schen M, Feldhahn N et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123鈥?35 m.20040440">CrossRef
    39. Pittenger M, Mackay A, Beck S, Jaiswal R, Douglas R, Mosca J et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143鈥?47 CrossRef
    40. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176(1):57鈥?6 CrossRef
    41. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U et al (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33(11):1402鈥?416 m.2005.07.003">CrossRef
    42. Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R et al (1989) Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Investig 84(5):1663鈥?670 CrossRef
    43. Shafiee A, Kabiri M, Ahmadbeigi N, Yazdani SO, Mojtahed M, Amanpour S et al (2011) Nasal septum-derived multipotent progenitors: a potent source for stem cell-based regenerative medicine. Stem Cells Dev 20(12):2077鈥?091 CrossRef
    44. Hashemi SM, Soleimani M, Zargarian SS, Haddadi-Asl V, Ahmadbeigi N, Soudi S et al (2009) In vitro differentiation of human cord blood-derived unrestricted somatic stem cells into hepatocyte-like cells on poly(蔚-caprolactone) nanofiber scaffolds. Cells Tissues Organs 190(3):135鈥?49 CrossRef
    45. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98(9):2615鈥?625 CrossRef
    46. Haynesworth SE, Baber MA, Caplan AI (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13(1):69鈥?0 CrossRef
    47. Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl E, Nitsch R et al (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10(8):987鈥?93 CrossRef
    48. Oda Y, Yoshimura Y, Ohnishi H, Tadokoro M, Katsube Y, Sasao M et al (2010) Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. J Biol Chem 285(38):29270鈥?9278 CrossRef
    49. K枚gler G, Sensken S, Wernet P (2006) Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Exp Hematol 34(11):1589鈥?595 m.2006.07.011">CrossRef
    50. Kellner S, Kikyo N (2010) Transcriptional regulation of the Oct4 gene, a master gene for pluripotency. Histol Histopathol 25(3):405
    51. Hawkins PG, Morris KV (2010) Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1(3):165鈥?75 CrossRef
    52. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124鈥?128 CrossRef
    53. Vizlin-Hodzic D, Johansson H, Ryme J, Simonsson T, Simonsson S (2011) SAF-A has a role in transcriptional regulation of Oct4 in ES cells through promoter binding. Cellular Reprogramming(Formerly鈥?Cloning and Stem Cells鈥? 13(1):13鈥?7 CrossRef
    54. Ding L, Paszkowski-Rogacz M, Nitzsche A, Slabicki MM, Heninger AK, de Vries I et al (2009) A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell Stem Cell 4(5):403 m.2009.03.009">CrossRef
    55. Saxe JP, Tomilin A, Sch枚ler HR, Plath K, Huang J (2009) Post-translational regulation of Oct4 transcriptional activity. PLoS ONE 4(2):e4467 CrossRef
    56. Rodeheffer MS, Birsoy KV, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135(2):240鈥?49 CrossRef
    57. Kleger A, Mahaddalkar P, Katz SF, Lechel A, Ju JY, Loya K et al (2012) Increased reprogramming capacity of mouse liver progenitor cells, compared with differentiated liver cells, requires the BAF complex. Gastroenterology 142(4):907鈥?17 CrossRef
    58. Sun N, Panetta NJ, Gupta DM, Wilson KD, Lee A, Jia F et al (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci 106(37):15720鈥?5725 CrossRef
    59. Kunisato A, Wakatsuki M, Kodama Y, Shinba H, Ishida I, Nagao K (2010) Generation of induced pluripotent stem cells by efficient reprogramming of adult bone marrow cells. Stem Cells and Development 19(2):229鈥?38 CrossRef
    60. Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H et al (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115(8):1549 CrossRef
    61. Shafiee A, Seyedjafari E, Soleimani M, Ahmadbeigi N, Dinarvand P, Ghaemi N (2011) A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnol Lett 33(6):1257鈥?264 CrossRef
    62. Niibe K, Kawamura Y, Araki D, Morikawa S, Miura K, Suzuki S et al (2011) Purified mesenchymal stem cells are an efficient source for iPS cell induction. PLoS ONE 6(3):e17610. doi:10.1371/journal.pone.0017610 CrossRef
    63. Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27(8):743鈥?45 CrossRef
    64. Doi A, Park I-H, Wen B, Murakami P, Aryee MJ, Irizarry R et al (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells embryonic stem cells and fibroblasts. Nat Genet 41(12):1350鈥?353. doi:10.1038/ng.471 CrossRef
    65. Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C et al (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5(1):111鈥?23 m.2009.06.008">CrossRef
    66. Nelson TJ, Martinez-Fernandez A, Yamada S, Mael AA, Terzic A, Ikeda Y (2009) Induced pluripotent reprogramming from promiscuous human stemness-related factors. Clin Trans Sci 2(2):118鈥?26 CrossRef
    67. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453(7194):544鈥?47 CrossRef
    68. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al (2007) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43鈥?0 CrossRef
    69. Hanna J, Saha K, Pando B, Van Zon J, Lengner CJ, Creyghton MP et al (2009) Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462(7273):595鈥?01 CrossRef
    70. Chivukula R, Mendell J (2009) Abate and switch: miR-145 in stem cell differentiation. Cell 137(4):606鈥?08 CrossRef
    71. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci 106(9):3207 CrossRef
    72. Arora H, Qureshi R, Jin S, Park AK, Park WY (2011) miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NF魏B1. Exp Mol Med 43(5):298 mm.2011.43.5.031">CrossRef
    73. Ji J, Zhao L, Budhu A, Forgues M, Jia HL, Qin LX et al (2010) Let-7g targets collagen type I [alpha] 2 and inhibits cell migration in hepatocellular carcinoma. J Hepatol 52(5):690鈥?97 CrossRef
  • 作者单位:Fatemeh Jamshidi Adegani (1) (2)
    Lida Langroudi (2)
    Ehsan Arefian (2) (3)
    Abbas Shafiee (2) (4)
    Peyman Dinarvand (2)
    Masoud Soleimani (5)

    1. Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
    2. Department of Molecular Biology and Genetic Engineering, and Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
    3. Department of Virology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
    4. Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
    5. Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-333, Tehran, Iran
  • ISSN:1573-4978
文摘
The self-renewal and differentiation status of a stem cell is very important in the applications concerning regenerative medicine. Proliferation capacity, differentiation potentials and epigenetic properties of stem cells differ between sources. Studies have shown the high potentials of stem cells in iPS reprogramming. To examine this; we have compared the stem-ness and differential potential of four adult stem cells from common sources. We show a correlation between pluripotency and differentiation status of each stem cell with available data on the reprogramming efficiency. Four human adult stem cells including, adipose tissue-mesenchymal stem cells (AT-MSC), bone marrow mesenchymal stem cells (BM-MSCs), nasal septum derived multipotent progenitors (NSP) and umbilical cord blood stem cells (USSCs) were isolated and characterized. The self- renewal and differentiation potentials of each stem cell were assessed. Stem-ness transcription factors and the propagation potentials of all cells were analyzed. Furthermore the differentiation potentials were evaluated using treatment with induction factors and specific MicroRNA profile. Real-time PCR results showed that our stem cells express innate differentiation factors, miR145 and Let7g, which regulate the stem-ness and also the reprogramming potentials of each stem cell. To complete our view, we compared the propagation and differentiation potentials by correlating the stem-ness gene expression with differentiation MicroRNAs, also the direct effect of these factors on reprogramming. Our results suggest that the potentials of adipose tissue stem cells for GMP (Good Manufacturing Practice) compliant starting material are adequate for clinical applications. Our results indicate a low risk potential for AT-MSCs as starting material for iPS production. Although let7g and mir145 are well known for their differentiation promoting effects, but function more of a fine tuning system between self-renewal and differentiation status.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700