High-resolution identification and abundance profiling of cassava (Manihot esculenta Crantz) microRNAs
详细信息    查看全文
  • 作者:Behnam Khatabi ; Siwaret Arikit ; Rui Xia ; Stephan Winter ; Doungous Oumar…
  • 关键词:Cassava ; miRNAs ; Deep sequencing ; phasiRNAs ; PHAS loci ; qRT ; PCR
  • 刊名:BMC Genomics
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:17
  • 期:1
  • 全文大小:1,397 KB
  • 参考文献:1.Fei Q, Xia R, Meyers BC. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell. 2013;25:2400–15.PubMed PubMedCentral CrossRef
    2.Axtell MJ. ShortStack: comprehensive annotation and quantification of small RNA genes. RNA. 2013;19:740–51.PubMed PubMedCentral CrossRef
    3.Voinnet O. Origin, biogenesis and activity of plant microRNAs. Cell. 2009;136:669–87.PubMed CrossRef
    4.Chen X. Plant microRNAs at a glance. Semin Cell Dev Biol. 2010;21:781.PubMed CrossRef
    5.Arikit S, Zhai J, Meyers BC. Biogenesis and function of rice small RNAs from noncoding RNA precursors. Curr Opin Plant Biol. 2013;16:170–9.PubMed CrossRef
    6.Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20:515–24.PubMed CrossRef
    7.Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell. 2002;110:513–20.PubMed CrossRef
    8.Jeong D-H, Park S, Zhai J, Gurazada SGR, De Paoli E, Meyers BC, et al. Massive analysis of rice small RNAs: Mechanistic implications of regulated miRNAs and variants for differential target RNA cleavage. Plant Cell. 2011;23:4185–207.PubMed PubMedCentral CrossRef
    9.FAO. Cassava for food and energy security. FAO Media Centre, Rome. 2008a; http://​www.​fao.​org/​newsroom/​en/​news/​2008/​1000899/​index.​html . Accessed March 2015.
    10.FAO. Faostat. 2008b; FAO, Rome. http://​faostat3.​fao.​org . Accessed March 2015.
    11.Balat M. Balat H Recent trends in global production and utilization of bio-ethanol fuel. Appl Energ. 2009;86:2273–82.CrossRef
    12.Jansson C, Westerbergh A, Zhang JM, Hu XW. Sun CX Cassava, a potential biofuel crop in the People’s Republic of China. Appl Energ. 2009;86:S95–9.CrossRef
    13.Osorio M, Gámez E, Molina S. Infante D Evaluation of cassava plants generated by somatic embryogenesis at different stages of development using molecular markers. Elect J Biotech. 2012;15:4.
    14.Yang L, Xu M, Koo Y, He J, Poethig RS. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. Elife. 2013;2, e00260.PubMed PubMedCentral
    15.Patanun O, Lertpanyasampatha M, Sojikul P, Viboonjun U, Narangajavana J. Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.). Mol Biotechnol. 2013;53:257–69.PubMed CrossRef
    16.Zeng C, Wang W, Zheng Y, Chen X, Bo W, et al. Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants. Nucleic Acids Res. 2009;38:981–95.PubMed PubMedCentral CrossRef
    17.Quintero A, Pérez-Quintero AL, López C. Identification of ta-siRNAs and cis-nat-siRNAs in cassava and their roles in response to cassava bacterial blight. Genomics Proteomics Bioinformatics. 2013;11:172–81.PubMed PubMedCentral CrossRef
    18.Ballén-Taborda C, Plata G, Ayling S, Rodríguez-Zapata F, Becerra Lopez-Lavalle LA, Duitama J, et al. Identification of Cassava MicroRNAs under Abiotic Stress. Int J Genomics. 2013;857986. doi:10.​1155/​2013/​857986
    19.Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, et al. The cassava genome: current progress, future directions. Trop Plant Biol. 2012;5:88–94.PubMed PubMedCentral CrossRef
    20.Montes RA, de Fátima Rosas-Cárdenas F, De Paoli E, Accerbi M, Rymarquis LA, Mahalingam G, et al. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun. 2014;5:3722.CrossRef
    21.Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10:94–108.PubMed PubMedCentral CrossRef
    22.Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, et al. Criteria for annotation of plant MicroRNAs. Plant Cell. 2008;20:3186–90.PubMed PubMedCentral CrossRef
    23.Ding Y, Tao Y, Zhu C. Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot. 2013;64:3077–86.PubMed CrossRef
    24.Wang T, Chen L, Zhao M, Tian Q, Zhang W. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics. 2011;12:367.PubMed PubMedCentral CrossRef
    25.Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, et al. Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun. 2007;354:585–90.PubMed CrossRef
    26.Lukasik A, Pietrykowska H, Paczek L, Szweykowska-Kulinska Z, Zielenkiewicz P. High-throughput sequencing identification of novel and conserved miRNAs in the Brassica oleracea leaves. BMC Genomics. 2013;14:801.PubMed PubMedCentral CrossRef
    27.Zhu H, Zhou Y, Castillo-González C, Lu A, Ge C, Zhao YT, et al. Bidirectional processing of pri-miRNAs with branched terminal loops by Arabidopsis Dicer-like1. Nat Struct Mol Biol. 2013;20:1106–15.PubMed PubMedCentral CrossRef
    28.Guan Q, Lu X, Zeng H, Zhang Y, Zhu J. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J. 2013;74:840–751.PubMed CrossRef
    29.Yang L, Conway SR, Poethig RS. Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development. 2011;138:245–9.
    30.Wu G, Poethig RS. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development. 2006;133:3539–47.PubMed PubMedCentral CrossRef
    31.Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell. 2009;138:738–49.PubMed CrossRef
    32.Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, et al. Specificity of ARGONAUTE7–miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell. 2008;133:128–41.PubMed CrossRef
    33.Axtell MJ, Jan C, Rajagopalan R, Bartel DP. A two-hit trigger for siRNA biogenesis in plants. Cell. 2006;127:565–77.PubMed CrossRef
    34.Liu W, Yu W, Hou L, Wang X, Zheng F, Wang W, et al. Analysis of miRNAs and their targets during adventitious shoot organogenesis of Acacia crassicarpa. PLoS One. 2014;9:e93438.PubMed PubMedCentral CrossRef
    35.Chen CJ, Liu Q, Zhang YC, Qu LH, Chen YQ. Gautheret D Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biol. 2011;8:538–47.PubMed CrossRef
    36.Curaba J, Talbot M, Li Z, Helliwell C. Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley. BMC Plant Biol. 2013;13:6.PubMed PubMedCentral CrossRef
    37.Schulze S, Schafer BN, Parizotto EA, Voinnet O, Theres K. LOST MERISTEMS genes regulate cell differentiation of central zone descendants in Arabidopsis shoot meristems. Plant J. 2010;64:668–78.PubMed CrossRef
    38.Wang L, Mai YX, Zhang YC, Luo Q, Yang HQ. MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol Plant. 2010;3:794–806.PubMed CrossRef
    39.Ma Z, Coruh C, Axtell MJ. Arabidopsis lyrata small RNAs: transient MIRNA and small interfering RNA loci within the Arabidopsis genus. Plant Cell. 2010;22:1090–10103.PubMed PubMedCentral CrossRef
    40.Wu HJ, Ma YK, Chen T, Wang M, Wang XJ. PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res. 2012;40. doi:10.​1093/​nar/​gks554 .
    41.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods Mol Biol. 2001;25:402–8.
    42.Zheng Y, Wang Y, Wu J, Ding B, Fei Z. A dynamic evolutionary and functional landscape of plant phased small interfering RNAs. BMC Biol. 2015;13:32.
    43.Xia R, Meyers BC, Liu Z, Beers EP, Ye S, Liu Z. MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA Biogenesis in Eudicots. Plant Cell. 2013;25:1555–72.PubMed PubMedCentral CrossRef
    44.Ma Z, Hu X, Cai W, Huang W, Zhou X, et al. Arabidopsis miR171-Targeted Scarecrow-Like Proteins Bind to GT cis -Elements and Mediate Gibberellin-Regulated Chlorophyll Biosynthesis under Light Conditions. PLoS Genet. 2014;10, e1004519.PubMed PubMedCentral CrossRef
    45.Iglesias MJ, Terrile MC, Windels D, Lombardo MC, Bartoli CG, Vazquez F, et al. MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PLoS One. 2014;9, e107678.PubMed PubMedCentral CrossRef
    46.Windels D, Bielewicz D, Ebneter M, Jarmolowski A, Szweykowska-Kulinska Z, et al. miR393 Is Required for Production of Proper Auxin Signalling Outputs. Plos One. 2014;9:e95972.PubMed PubMedCentral CrossRef
    47.Si-Ammour A, Windels D, Arn-Bouldoires E, Kutter C, Ailhas J, Meins Jr F, et al. miR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin-related development of Arabidopsis leaves. Plant Physiol. 2011;157:683–91.PubMed PubMedCentral CrossRef
    48.Calderon Villalobos LI, Lee S, De Oliveira C, Ivetac A, Brandt W, et al. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol. 2012;8:477–85.PubMed CrossRef
    49.Gray WM, Kepinski S, Rouse D, Leyser O. Estelle M Auxin regulates SCF (TIR1)-dependent degradation of AUX/IAA proteins. Nature. 2001;414:271–6.PubMed CrossRef
    50.Guan X, Pang M, Nah G, Shi X, Ye W, Stelly DM, et al. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat Commun. 2014;5:3050.PubMed CrossRef
    51.Li C, Lu S. Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza. BMC Genomics. 2014;15:277.PubMed PubMedCentral CrossRef
    52.Xia R, Zhu H, An YQ, Beers EP, Liu Z. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol. 2012;13:R47.PubMed PubMedCentral CrossRef
    53.McKey D, Elias M, Pujol B, Duputié A. The evolutionary ecology of clonally propagated domesticated plants. New Phytol. 2010;186:318–32.PubMed CrossRef
    54.Westby A. Cassava utilization, storage and small-scale processing. In: Hillocks RJ, Thresh JM, Bellotti AC, editors. Cassava biology, production and utilization. Wallingford: CABI Publishing. 2002;281–300.
    55.Mann C. Reseeding the Green Revolution. Science. 1997;277:1038–43.CrossRef
    56.Makwarela M, Rey MEC. Cassava Biotechnology, a southern African perspective. Biotechnol Molecular Biol Rev. 2006;1:2–11.
    57.Olsen KM, Schaal BA. Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci U S A. 1999;96:5586–91.PubMed PubMedCentral CrossRef
    58.Hahn SK, Terry ER. Leuschner K Breeding cassava for resistance to cassava mosaic disease. Euphytica. 1980;29:673–83.CrossRef
    59.Okogbenin E, Porto MCM, Egesi C, Mba C, Espinosa E, Santos LG, et al. Fregene MA Marker-assisted introgression of resistance to cassava mosaic disease into Latin American germplasm for the genetic improvement of cassava in Africa. Crop Sci. 2007;47:1895–904.CrossRef
    60.Chávez AL, Sánchez T, Jaramillo G, Bedoya JM, Echeverry J, Bolaños A, et al. Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica. 2005;143:125–33.CrossRef
    61.Ceballos H, Fregene M, Pérez JC, Morante N, Calle F. Cassava genetic improvement. In: Kang MS, Priyadarshan PM, editors. Breeding major food staples. Ames: Blackwell Publishing; 2007. p. 365–91.CrossRef
    62.Morante N, Sanchez T, Ceballos H, Calle F, Perez JC, Egesi C, et al. Tolerance to postharvest physiological deterioration in cassava roots. Crop Sci. 2010;50:1333–8.CrossRef
    63.Rudi N, Norton GW, Alwang J, Asumugha G. Economic impact analysis of marker-assisted breeding for resistance to pests and postharvest deterioration in cassava. Afr J Agric Resour Econ. 2010;4:110–22.
    64.El-Sharkawy MA. Cassava biology and physiology. Plant Mol Biol. 2004;56:481–50.PubMed CrossRef
    65.Ceballos H, Iglesias CA, Perez JC, Dixon AG. Cassava breeding: opportunities and challenges. Plant Mol Biol. 2004;56:503–16.PubMed CrossRef
    66.Nassar N, Ortiz R. Breeding cassava to feed the poor. Sci Am. 2010;302:78–84.PubMed CrossRef
    67.González AE, Schöpke C, Taylor NJ, Beachy RN, Fauquet CM. Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium-mediated transformation of embryogenic suspension cultures. Plant Cell Rep. 1998;17:827–31.CrossRef
    68.Zhang P, Potrykus I, Puonti-Kaerlas J. Efficient production of transgenic cassava using negative and positive selection. Transgenic Res. 2000;9:405–15.PubMed CrossRef
    69.Dhandapani V, Ramchiary N, Paul P, Kim J, Choi SH, Lee J, et al. Identification of potential microRNAs and their targets in Brassica rapa L. Mol Cells. 2011;32:21–37.PubMed PubMedCentral CrossRef
    70.Seitz H, Tushir JS, Zamore PD. A 5′-uridine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNA-induced silencing complex formation. Silence. 2011;2:4. doi:10.​1186/​1758-907X-2-4 .PubMed PubMedCentral CrossRef
    71.Zhang J, Zhang S, Han S, Wu T, Li X, Li W, et al. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta. 2012;236:647–57.PubMed CrossRef
    72.Li B, Qin Y, Duan H, Yin W, Xia X. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot. 2011;62:3765–79.PubMed PubMedCentral CrossRef
    73.Heisel SE, Zhang Y, Allen E, Guo L, Reynolds TL, Yang X, et al. Characterization of unique small RNA populations from rice grain. PLoS One. 2008;3, e2871.PubMed PubMedCentral CrossRef
    74.Zhao M, Tai H, Sun S, Zhang F, Xu Y, Li WX. Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS One. 2012;7, e29669.PubMed PubMedCentral CrossRef
    75.Zeng QY, Yang CY, Ma QB, Li XP, Dong WW, Nian H. Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol. 2012;12:182.PubMed PubMedCentral CrossRef
    76.Jiang J, Lv M, Liang Y, Ma Z, Cao J. Identification of novel and conserved miRNAs involved in pollen development in Brassica campestris ssp. chinensis by high-throughput sequencing and degradome analysis. BMC Genomics. 2014;15:146.PubMed PubMedCentral CrossRef
    77.Cuperus JT, Fahlgren N, Carrington JC. Evolution and functional diversification of MIRNA genes. Plant Cell. 2011;23:431–42.PubMed PubMedCentral CrossRef
    78.Chen X, Xia J, Xia Z, Zhang H, Zeng C, Lu C, et al. Potential functions of microRNAs in starch metabolism and development revealed by miRNA transcriptome profiling of cassava cultivars and their wild progenitor. BMC Plant Biol. 2015;15:33.PubMed PubMedCentral CrossRef
    79.Gébelin V, Leclercq J, Kuswanhadi, Argout X, Chaidamsari T, Hu S, et al. The small RNA profile in latex from Hevea brasiliensis trees is affected by tapping panel dryness. Tree Physiol. 2013;33:1084–98.PubMed CrossRef
    80.Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, et al. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol. 2004;2:203–16.PubMed CrossRef
    81.Kopka J, Pical C, Gray JE. Muller-Rober B Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato. Plant Physiol. 1998;116:239–50.PubMed PubMedCentral CrossRef
    82.Lin Y, Lai Z. Comparative analysis reveals dynamic changes in miRNAs and their targets and expression during somatic embryogenesis in longan (Dimocarpus longan Lour.). PLoS One. 2013;8, e60337.PubMed PubMedCentral CrossRef
    83.Naya L, Paul S, Valdés-López O, Mendoza-Soto AB, Nova-Franco B, Sosa-Valencia G, et al. Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS One. 2014;9, e84416.PubMed PubMedCentral CrossRef
    84.Yu X, Wang H, Lu Y, de Ruiter M, Cariaso M, Prins M, et al. Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot. 2012;63:1025–38.PubMed PubMedCentral CrossRef
    85.Waters BM, McInturf SA, Stein RJ. Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. J Exp Bot. 2012;63:5903–18.PubMed PubMedCentral CrossRef
    86.Chuck G, Cigan AM, Saeteurn K, Hake S. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet. 2007;39:544–9.PubMed CrossRef
    87.Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. Specific effects of microRNAs on the plant transcriptome. Dev Cell. 2005;8:517–27.PubMed CrossRef
    88.Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell. 2009;138:750–9.PubMed PubMedCentral CrossRef
    89.Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313:1596–604.PubMed CrossRef
    90.Arikit S, Xia R, Kakrana A, Huang K, Zhai J, Yan Z, et al. An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes. Plant Cell. 2014;26:4584–601.PubMed PubMedCentral CrossRef
    91.Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, et al. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 2011;25:2540–53.PubMed PubMedCentral CrossRef
  • 作者单位:Behnam Khatabi (1)
    Siwaret Arikit (2) (6)
    Rui Xia (2)
    Stephan Winter (3)
    Doungous Oumar (1) (4)
    Kone Mongomake (1) (5)
    Blake C. Meyers (2)
    Vincent N. Fondong (1)

    1. Department of Biological Sciences, Delaware State University, Dover, DE, 19901, USA
    2. Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
    6. Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen and Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
    3. Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
    4. Ekona Research Centre, Southwest, Cameroon
    5. Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Small RNAs (sRNAs) are endogenous sRNAs that play regulatory roles in plant growth, development, and biotic and abiotic stress responses. In plants, one subset of sRNAs, microRNAs (miRNAs) exhibit tissue-differential expression and regulate gene expression mainly through direct cleavage of mRNA or indirectly via production of secondary phased siRNAs (phasiRNAs) that silence cognate target transcripts in trans.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700