Control of myocyte remodeling in vitro with engineered substrates
详细信息    查看全文
  • 作者:Nicholas A. Geisse (1)
    Sean P. Sheehy (1)
    Kevin Kit Parker (1)
  • 关键词:Microcontact printing ; Cytoskeleton ; Myofibril ; Cardiac myocyte ; Atomic force microscopy ; Confocal microscopy
  • 刊名:In Vitro Cellular & Developmental Biology - Animal
  • 出版年:2009
  • 出版时间:August 2009
  • 年:2009
  • 卷:45
  • 期:7
  • 页码:343-350
  • 全文大小:407KB
  • 参考文献:1. Bray, M. A.; Sheehy, S. P.; Parker, K. K. Sarcomere alignment is regulated by myocyte shape. / Cell Motility Cytoskel. 65(8): 641鈥?51; 2008. doi:10.1002/cm.20290 . CrossRef
    2. Campbell, S. E.; Gerdes, A. M.; Smith, T. D. Comparison of regional differences in cardiac myocyte dimensions in rats, hamsters, and guinea pigs. / Anat. Rec. 219(1): 53鈥?9; 1987. doi:10.1002/ar.1092190110 . CrossRef
    3. Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber, D. E. Geometric control of cell life and death. / Science. 276: 1425鈥?428; 1997. doi:10.1126/science.276.5317.1425 . CrossRef
    4. Delbridge, L. M.; Satoh, H.; Yuan, W.; Bassani, J. W.; Qi, M.; Ginsburg, K. S.; Samarel, A. M.; Bers, D. M. Cardiac myocyte volume, Ca2+ fluxes, and sarcoplasmic reticulum loading in pressure-overload hypertrophy. / Am. J. Phys-Heart Circ. Phys. 272(5): 2425鈥?435; 1997.
    5. Engler, A. J.; Carag-Krieger, C.; Johnson, C. P.; Raab, M.; Tang, H. Y.; Speicher, D. W.; Sanger, J. W.; Sanger, J. M.; Discher, D. E. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. / J. Cell Sci. 121(Pt 22): 3794鈥?802; 2008. doi:10.1242/jcs.029678 . CrossRef
    6. Gerdes, A. M. Cardiac myocyte remodeling in hypertrophy and progression to failure. / J. Card. Fail. 8: S264鈥揝268; 2002. doi:10.1054/jcaf.2002.129280 . CrossRef
    7. Gerdes, A. M.; Capasso, J. M. Structural remodeling and mechanical dysfunction of cardiac myocytes in heart failure. / J. Mol. Cell Cardiol. 27: 849鈥?56; 1995. doi:10.1016/0022-2828(95)90000-4 . CrossRef
    8. Glantz, S. A. Primer of Biostatistics. 5th ed. McGraw Hill, New York2002.
    9. Huang, S.; Chen, C. S.; Ingber, D. E. Control of cyclin D1, p27(Kip1), and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. / Mol. Biol. Cell. 9: 3179鈥?193; 1998.
    10. Jacot, J. G.; McCulloch, A. D.; Omens, J. H. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. / Biophys. J. 95(7): 3479鈥?487; 2008. doi:10.1529/biophysj.107.124545 . CrossRef
    11. Lammerding, J.; Kamm, R. D.; Lee, R. T. Mechanotransduction in cardiac myocytes. / Ann. N.Y. Acad. Sci. 1015: 53鈥?0; 2004. doi:10.1196/annals.1302.005 . CrossRef
    12. LeDuc, P.; Bellin, R. Nanoscale intracellular organization and functional architecture mediating cellular behavior. / Ann. Biomed. Eng. 34(1): 102鈥?13. (12); 2006.
    13. Lindner, M.; Bohle, T.; Beuckelmann, D. J. Ca2+-handling in heart failure鈥攁 review focusing on Ca2+ sparks. / Basic Res. Cardiol. 97(Suppl 1): I79鈥?82; 2002a. doi:10.1007/s003950200034 .
    14. Lindner, M.; Brandt, M. C.; Sauer, H.; Hescheler, J.; Bohle, T.; Beuckelmann, D. J. Calcium sparks in human ventricular cardiomyocytes from patients with terminal heart failure. / Cell Calcium. 31: 175鈥?82; 2002b. doi:10.1054/ceca.2002.0272 . CrossRef
    15. Onodera, T.; Tamura, T.; Said, S.; McCune, S. A.; Gerdes, A. M. Maladaptive remodeling of cardiac myocyte shape begins long before failure in hypertension. / Hypertension. 32: 753鈥?57; 1998.
    16. Parker, K. K.; Brock, A. L.; Brangwynne, C.; Mannix, R. J.; Wang, N.; Ostuni, E.; Geisse, N. A.; Adams, J. C.; Whitesides, G. M.; Ingber, D. E. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. / FASEB J. 16: 1195鈥?204; 2002. doi:10.1096/fj.02-0038com . CrossRef
    17. Parker, K. K.; Tan, J.; Chen, C. S.; Tung, L. Myofibrillar architecture in engineered cardiac myocytes. / Circ. Res. 103: 340鈥?42; 2008. doi:10.1161/CIRCRESAHA.108.182469 . CrossRef
    18. Tan, J. L.; Liu, W.; Nelson, C. M.; Raghavan, S.; Chen, C. S. Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. / Tissue Eng. 10: 865鈥?72; 2004. doi:10.1089/1076327041348365 . CrossRef
    19. Walters, D. A.; Cleveland, J. P.; Thomson, N. H.; Hansma, P. K.; Wendman, M. A.; Gurley, G.; Elings, V. Short cantilevers for atomic force microscopy. / Rev. Sci. Instrum. 67: 3583; 1996. doi:10.1063/1.1147177 . CrossRef
    20. Shorofsky, S. R.; Aggarwal, R.; Corretti, M.; Baffa, J. M.; Strum, J. M.; Al-Seikhan, B. A.; Kobayashi, Y. M.; Jones, L. R.; Wier, W. G.; Balke, C. W. Cellular mechanisms of altered contractility in the hypertrophied heart: big hearts, big sparks. / Circ. Res. 84: 424鈥?34; 1999.
  • 作者单位:Nicholas A. Geisse (1)
    Sean P. Sheehy (1)
    Kevin Kit Parker (1)

    1. School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce Hall 322a, Cambridge, MA, 02138, USA
文摘
Tissue microenvironments can regulate cell behavior by imposing physical restrictions on their geometry and size. An example of these phenomena is cardiac morphogenesis, where morphometric changes in the heart are concurrent with changes in the size, shape, and cytoskeleton of ventricular myocytes. In this study, we asked how myocytes adapt their size, shape, and intracellular architecture when spatially confined in vitro. To answer this question, we used microcontact printing to physically constrain neonatal rat ventricular myocytes on fibronectin islands in culture. The myocytes spread and assumed the shape of the islands and reorganized their cytoskeleton in response to the geometric cues in the extracellular matrix. Cytoskeletal architecture is variable, where myocytes cultured on rectangular islands of lower aspect ratios (length to width ratio) were observed to assemble a multiaxial myofibrillar arrangement; myocytes cultured on rectangles of aspect ratios approaching those observed in vivo had a uniaxial orientation of their myofibrils. Using confocal and atomic force microscopy, we made precise measurements of myocyte volume over a range of cell shapes with approximately equal surface areas. When myocytes are cultured on islands of variable shape but the same surface area, their size is conserved despite the changes in cytoskeletal architecture. Our data suggest that the internal cytoskeletal architecture of the cell is dependent on extracellular boundary conditions while overall cell size is not, suggesting a growth control mechanism independent of the cytoskeleton and cell geometry.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700