A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease
详细信息    查看全文
  • 作者:Nalini Raghavachari (1)
    Jennifer Barb (2)
    Yanqin Yang (1)
    Poching Liu (1)
    Kimberly Woodhouse (1)
    Daniel Levy (4) (5)
    Christopher J O’Donnell (4) (6)
    Peter J Munson (2)
    Gregory J Kato (3)
  • 关键词:Sickle cell disease ; RNA ; Seq ; Exon arrays ; Transcriptome ; Clinical genomics
  • 刊名:BMC Medical Genomics
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:5
  • 期:1
  • 全文大小:1483KB
  • 参考文献:1. Melton SD, Genta RM, Souza RF: Biomarkers and molecular diagnosis of gastrointestinal and pancreatic neoplasms. / Nat Rev Gastroenterol Hepatol 2010,7(11):620-28.
    2. Rudan I: New technologies provide insights into genetic basis of psychiatric disorders and explain their co-morbidity. / Psychiatr Danub 2010,22(2):190-92.
    3. Weitzel JN, Blazer KR, Macdonald DJ, Culver JO, Offit K: Genetics, genomics, and cancer risk assessment: State of the Art and Future Directions in the Era of Personalized Medicine. / CA Cancer J Clin 2011,61(5):327-59.
    4. Yang X, Jiao R, Yang L, Wu LP, Li YR, Wang J: New-generation high-throughput technologies based 'omics' research strategy in human disease. / Yi Chuan 2011,33(8):829-46.
    5. Offit K: Personalized medicine: new genomics, old lessons. / Hum Genet 2011,130(1):3-4. CrossRef
    6. Lam CW, Lau KC, Tong SF: Microarrays for personalized genomic medicine. / Adv Clin Chem 2011, 52:1-8. CrossRef
    7. Abdueva D, Wing MR, Schaub B, Triche TJ: Experimental comparison and evaluation of the Affymetrix exon and U133Plus2 GeneChip arrays. / PLoS One 2007,2(9):e913. CrossRef
    8. Bradford JR, Hey Y, Yates T, Li Y, Pepper SD, Miller CJ: A comparison of massively parallel nucleotide sequencing with oligonucleotide microarrays for global transcription profiling. / BMC Genomics 2010, 11:282. CrossRef
    9. Liu JM, Camilli A: Discovery of bacterial sRNAs by high-throughput sequencing. / Methods Mol Biol 2011, 733:63-9. CrossRef
    10. Cirulli ET, Singh A, Shianna KV, Ge D, Smith JP, Maia JM, Heinzen EL, Goedert JJ, Goldstein DB: Screening the human exome: a comparison of whole genome and whole transcriptome sequencing. / Genome Biol 2010,11(5):R57. CrossRef
    11. Tang F, Barbacioru C, Nordman E, Li B, Xu N, Bashkirov VI, Lao K, Surani MA: RNA-Seq analysis to capture the transcriptome landscape of a single cell. / Nat Protoc 2010,5(3):516-35. CrossRef
    12. Nagalakshmi U, Waern K, Snyder M: RNA-Seq: a method for comprehensive transcriptome analysis. / Curr Protoc Mol Biol 2010, Chapter 4:11-3. Unit 4 11
    13. Tariq MA, Kim HJ, Jejelowo O, Pourmand N: Whole-transcriptome RNAseq analysis from minute amount of total RNA. / Nucleic Acids Res 2011,39(18):e120. CrossRef
    14. Zhao J, Grant SF: Advances in whole genome sequencing technology. / Curr Pharm Biotechnol 2010,12(2):293-05. CrossRef
    15. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. / Genome Res 2008,18(9):1509-517. CrossRef
    16. Liu GE: Recent Applications of DNA Sequencing Technologies in Food, Nutrition and Agriculture. / Recent Pat Food Nutr Agric 2011,3(3):187-95.
    17. Raghavachari N, Xu X, Munson PJ, Gladwin MT: Characterization of whole blood gene expression profiles as a sequel to globin mRNA reduction in patients with sickle cell disease. / PLoS One 2009,4(8):e6484. CrossRef
    18. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. / Journal of the Royal Statistical Society Series B (Methodological) 1995,57(1):289-00.
    19. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. / Bioinformatics 2009,25(9):1105-111. CrossRef
    20. Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. / Bioinformatics 2010,26(6):841-42. CrossRef
    21. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. / Nat Methods 2008,5(7):621-28. CrossRef
    22. Bieche I, Parfait B, Tozlu S, Lidereau R, Vidaud M: Quantitation of androgen receptor gene expression in sporadic breast tumors by real-time RT-PCR: evidence that MYC is an AR-regulated gene. / Carcinogenesis 2001,22(9):1521-526. CrossRef
    23. Ma Q, Lu AY: Pharmacogenetics, pharmacogenomics, and individualized medicine. / Pharmacol Rev 2011,63(2):437-59. CrossRef
    24. Mardis ER: A decade's perspective on DNA sequencing technology. / Nature 2011,470(7333):198-03. CrossRef
    25. Taylor BS, Ladanyi M: Clinical cancer genomics: how soon is now? / J Pathol 2010,223(2):318-26.
    26. Tommasi S, Danza K, Pilato B, De Summa S: Innovative technology for cancer risk analysis. / Ann Oncol 2011,22(Suppl 1):i37-3. CrossRef
    27. Schweiger MR, Kerick M, Timmermann B, Isau M: The power of NGS technologies to delineate the genome organization in cancer: from mutations to structural variations and epigenetic alterations. / Cancer Metastasis Rev 2011,30(2):199-10. CrossRef
    28. Settle SH, Sulman EP: Tumor profiling: development of prognostic and predictive factors to guide brain tumor treatment. / Curr Oncol Rep 2010,13(1):26-6. CrossRef
    29. Xu W, Seok J, Mindrinos MN, Schweitzer AC, Jiang H, Wilhelmy J, Clark TA, Kapur K, Xing Y, Faham M, / et al.: Human transcriptome array for high-throughput clinical studies. / Proc Natl Acad Sci U S A 2011,108(9):3707-712. CrossRef
    30. Morris CR: Mechanisms of vasculopathy in sickle cell disease and thalassemia. / Hematology Am Soc Hematol Educ Program 2008, 177-85.
    31. Jison ML, Munson PJ, Barb JJ, Suffredini AF, Talwar S, Logun C, Raghavachari N, Beigel JH, Shelhamer JH, Danner RL, Gladwin MT: Blood mononuclear cell gene expression profiles characterize the oxidant, hemolytic, and inflammatory stress of sickle cell disease. / Blood 2004,104(1):270-80. CrossRef
    32. Steinberg MH, Brugnara C: Pathophysiological-based approaches to treatment of sickle cell disease. / Annu Rev Med 2003, 54:89-12. CrossRef
    33. Raghavachari N, Xu X, Harris A, Villagra J, Logun C, Barb J, Solomon MA, Suffredini AF, Danner RL, Kato G, / et al.: Amplified expression profiling of platelet transcriptome reveals changes in arginine metabolic pathways in patients with sickle cell disease. / Circulation 2007,115(12):1551-562. CrossRef
    34. Kato GJ, Hebbel RP, Steinberg MH, Gladwin MT: Vasculopathy in sickle cell disease: Biology, pathophysiology, genetics, translational medicine, and new research directions. / Am J Hematol 2009,84(9):618-25. CrossRef
    35. Tanno T, Bhanu NV, Oneal PA, Goh SH, Staker P, Lee YT, Moroney JW, Reed CH, Luban NL, Wang RH, / et al.: High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. / Nat Med 2007,13(9):1096-101. CrossRef
    36. Feldmann J, Callebaut I, Raposo G, Certain S, Bacq D, Dumont C, Lambert N, Ouachee-Chardin M, Chedeville G, Tamary H, / et al.: Munc13- is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). / Cell 2003,115(4):461-73. CrossRef
    37. Cotter PD, Willard HF, Gorski JL, Bishop DF: Assignment of human erythroid delta-aminolevulinate synthase (ALAS2) to a distal subregion of band Xp11.21 by PCR analysis of somatic cell hybrids containing X; autosome translocations. / Genomics 1992,13(1):211-12. CrossRef
    38. Cox TC, Bawden MJ, Martin A, May BK: Human erythroid 5-aminolevulinate synthase: promoter analysis and identification of an iron-responsive element in the mRNA. / The EMBO journal 1991,10(7):1891-902.
    39. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1755-8794/5/28/prepub
  • 作者单位:Nalini Raghavachari (1)
    Jennifer Barb (2)
    Yanqin Yang (1)
    Poching Liu (1)
    Kimberly Woodhouse (1)
    Daniel Levy (4) (5)
    Christopher J O’Donnell (4) (6)
    Peter J Munson (2)
    Gregory J Kato (3)

    1. Genomics Core Facility, Genetics and Development Biology, NHLBI, The National Institutes of Health, 10 Center Drive, Bldg 10, 8C 103B, Bethesda, 20892, USA
    2. Mathematical and Statistical computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
    4. The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
    5. The Center for Population Studies and the Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
    6. The Center for Cardiovascular Genomics and the Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
    3. Hematology Branch, National Institutes of Health, Bethesda, MD, USA
  • ISSN:1755-8794
文摘
Background Transcriptomic studies in clinical research are essential tools for deciphering the functional elements of the genome and unraveling underlying disease mechanisms. Various technologies have been developed to deduce and quantify the transcriptome including hybridization and sequencing-based approaches. Recently, high density exon microarrays have been successfully employed for detecting differentially expressed genes and alternative splicing events for biomarker discovery and disease diagnostics. The field of transcriptomics is currently being revolutionized by high throughput DNA sequencing methodologies to map, characterize, and quantify the transcriptome. Methods In an effort to understand the merits and limitations of each of these tools, we undertook a study of the transcriptome in sickle cell disease, a monogenic disease comparing the Affymetrix Human Exon 1.0 ST microarray (Exon array) and Illumina’s deep sequencing technology (RNA-seq) on whole blood clinical specimens. Results Analysis indicated a strong concordance (R--.64) between Exon array and RNA-seq data at both gene level and exon level transcript expression. The magnitude of differential expression was found to be generally higher in RNA-seq than in the Exon microarrays. We also demonstrate for the first time the ability of RNA-seq technology to discover novel transcript variants and differential expression in previously unannotated genomic regions in sickle cell disease. In addition to detecting expression level changes, RNA-seq technology was also able to identify sequence variation in the expressed transcripts. Conclusions Our findings suggest that microarrays remain useful and accurate for transcriptomic analysis of clinical samples with low input requirements, while RNA-seq technology complements and extends microarray measurements for novel discoveries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700