Effect of postural changes on normal and stenosed common carotid artery using FSI
详细信息    查看全文
  • 作者:B. Raghuvir Pai (1)
    Anurag Ayachit (2)
    S. M. Abdul Khader (1)
    K. A. Ahmed (3)
    V. R. K. Rao (2)
    S. Ganesh Kamath (4)
    P. D. Gupta (5)
  • 关键词:FSI ; Altered gravity ; Carotid bifurcation ; Stenosis
  • 刊名:Australasian Physical & Engineering Sciences in Medicine
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:37
  • 期:1
  • 页码:139-152
  • 全文大小:
  • 参考文献:1. Tang D, Kobayashi S, Zheng J (2003) Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid structure interaction model. Ann Biomed Eng 31(10):1182-193 CrossRef
    2. Abdul Khader SM, Shenoy BS, Raghuvir Pai B, Mahmood NS, Kamath G, Rao VRK (2011) Effect of increased severity in patient specific stenosis of common carotid artery using CFD-A case study. World J Model Simul 7(2):113-22
    3. Abdul Khader SM, Ayachit A, Raghuvir Pai B, Rao VRK, Kamath SG (2012) FSI simulation of common carotid under normal and high blood pressures, advances in mechanical engineering 2012
    4. Loring BR (1993) Human cardiovascular control. Oxford University Press
    5. Savin E, Bailliart O, Checoury A, Bonnin P, Grossin C, Martineaud JP (1995) Influence of posture on middle cerebral artery mean flow velocity in humans. Eur J Appl Physiol 71(2-):161-65 CrossRef
    6. Olufsen MS, Ottesen JT, Tran HT, Ellwein LM (2007) Blood pressure and blood flow variation during postural change from sitting to standing : model development and validation. Appl Physiol 99(4):1523-537 CrossRef
    7. Janneke G (2005) Postural changes in humans: effects of gravity on the circulation. Ph.D thesis, Cardiovascular Research Institute, Amsterdam
    8. Azhim A, Katai M, Akutagawa M, Hirao Y, Yoshizaki K, Obara S (2006) Measurement of blood flow velocity waveforms in the carotid, brachial and femoral arteries during postural change. Proceeding of international conference on biomedical and pharmaceutical engineering pp 438-42
    9. Peterson K, Ozawa ET, Pantalos GM, Sharp MK (2002) Numerical simulation of the influence of gravity and posture on cardiac performance. Ann Biomed Eng 30(2):247-59 CrossRef
    10. Kim CS, Kiris C, Kwak D, David T (2006) Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity. J Biomech Eng 128(2):194-02 CrossRef
    11. Alirezaye-Davatgar M (2006) Numerical simulation of blood flow in the systemic vasculature incorporating gravitational force with application to the cerebral circulation. Ph.D thesis, The University of New South Wales
    12. Ferziger J, Peric M (2002) Computational methods for fluid dynamics, Heidelberg, Berlin
    13. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195(13-6):1885-895 CrossRef
    14. ANSYS Release 13.0 Documentation (2011) ANSYS Company, Pittsburgh
    15. Alberto Figueroa C (2006) A coupled-momentum method to model blood flow and vessel deformation in human arteries: applications in disease research and simulation-based medical planning. Ph.D thesis, Stanford University
    16. Ku DN (1997) Blood flow in arteries. Annu Rev Fluid Mech 29(1):399-34 CrossRef
    17. Tang D, Yang C, Huang Y, Ku DN (1999) Wall stress and strain analysis using a three-dimensional thick-wall model with fluid–structure interactions for blood flow in carotid arteries with stenoses. Comput Struct 72:341-56 CrossRef
    18. Moriyama K, Ifuku H (2007) Assessment of cardiac contractility during a cold pressor test by using (dP/dt)/P of carotid artery pulses. Eur J Appl Physiol 100(2):185-91 CrossRef
    19. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43(1):151-59 CrossRef
    20. Vignon-Clementel IE (2006) A coupled multidomain method for computational modeling of blood flow. Ph.D thesis, Stanford University
    21. Bhaskaran S (2008) Effects of altered gravity on insects, plants and the human cardiovascular system. Ph.D thesis, University of Pune
    22. Deshpande MD, Giddens DP (1976) Steady laminar flow through modeled vascular stenoses. J Biomech 9:165-73 CrossRef
    23. Long Q, Xu XY, Ramnarine KV, Hoskins P (2001) Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J Biomech 34(10):1229-242 CrossRef
    24. Tezduyar TE, Takizawa K, Moorman C, Christopher J (2009) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46(1):17-9 CrossRef
    25. Ai L, Zhang L, Dai W, Hu C, Shung KK, Hsiai TK (2010) Real-time assessment of flow reversal in an eccentric arterial stenotic model. J Biomech 43(14):2678-683 CrossRef
    26. Lee KW, Xu XY (2002) Modelling of flow and wall behaviour in a mildly stenosed tube. Med Eng Phys 24(9):575-86 CrossRef
    27. Fung Y (1984) Biodynamics-circulation. Springer, New York
    28. Rayz VL, Boussel L, Lawton MT, Acevedo-Bolton G, Ge L, Young WL, Higashida RT, Saloner D (2008) Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann Biomed Eng 36(11):1793-804 CrossRef
    29. Varghese SS, Steven HF (2003) Numerical modeling of pulsatile turbulent flow in stenotic vessels. J Biomech Eng 125(4):445-60 CrossRef
    30. Valencia A, Villanueva M (2006) Unsteady flow and mass transfer in models of stenotic arteries considering fluid-structure interaction. Int Commun Heat Mass Transf 33(8):966-75 CrossRef
    31. Tambasco M (2002) Lagrangian hemodynamics of the stenosed carotid bifurcation. Ph.D thesis, The University of Western Ontario
    32. Feng R, Xenos M, Girdhar G, Kang W, Davenport JW, Deng Y, Bluestein D (2012) Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD. Biomech Model Mechanobiol 11(1-):119-29 CrossRef
    33. Li MX, Beech-Brandt JJ, John LR, Hoskins PR (2007) Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses. J Biomech 40(16):3715-724 CrossRef
    34. Salsac AV, Sparks SR, Lasheras JC (2004) Hemodynamic changes occurring during the progressive enlargement of abdominal aortic aneurysm. Ann Vasc Surg 18(1):14-1 CrossRef
    35. Brook BS, Falle SAEG, Pedley TJ (1999) Numerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state. J Fluid Mech 396:223-56 CrossRef
    36. Jung H, Choi JW, Park CG (2004) Asymmetric flows of non-newtonian fluids in symmetric stenosed artery. Rheology 16(2):101-08
    37. Pontrelli G (2001) Blood flow through an axisymmetric stenosis. Proc Inst Mech Eng [H] 215(1):1-0 CrossRef
    38. Li ZY, Taviani V, Tang T, Sadat U, Young V, Patterson GM, Gillard JH (2009) The mechanical triggers of plaque rupture: shear stress versus pressure gradient. British J Radiol 82:S39–S45 CrossRef
    39. Molla M (2009) LES of pulsatile flow in the models of arterial stenosis and aneurysm. Ph.D thesis, University of Glasgow
    40. Tang D, Yang C, Kobayashi S, Ku DN (2001) Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid–wall interactions. J Biomech Eng 123(6):548-57 CrossRef
    41. Gao H (2010) Carotid plaque stress analysis by fluid structure interaction based in in-vivo mri: implications to plaque vulnerability assessment. Ph.D thesis, Brunel University
    42. Salzar RS, Thubrikar MJ, Eppink RT (1995) Pressure-induced mechanical stress in the carotid artery bifurcation: a possible correlation to atherosclerosis. J Biomech 28(11):1333-340 CrossRef
    43. Zhao SZ, Xu XY, Hughes AD, Thom SA, Stanton AV (2000) Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech 33(8):975-84 CrossRef
    44. Perktold K, Rappitsch G (1995) Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech 28(7):845-56 CrossRef
    45. Younis HF, Kaazempur-Mofrad MR, Chan RC, Isasi AG (2004) Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech Model Mechanobiol 3(1):17-2 CrossRef
    46. Castellano V, Olive JL, Stoner L, Black C, Mccully KK (2004) Blood flow response to a postural challenge in older men and women. Dyn Med 3:1- CrossRef
    47. Lee SE, Lee SW, Fischer PF, Bassiouny HS, Loth F (2008) Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J Biomech 41(11):2551-561 CrossRef
    48. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20:45-2 CrossRef
    49. Greene NH, Lee LA (2012) Advances in anesthesia modern and evolving understanding of cerebral perfusion and autoregulation. Adv Anesthesia 30(1):97-29 CrossRef
    50. Krause N, Lynch JW, Kaplan GA, Cohen RD, Salonen R, Kaplan A, Cohen D, Lynch W (2000) Standing at work and progression of carotid atherosclerosis. Scand J Work Environ Health 26(3):227-36 CrossRef
  • 作者单位:B. Raghuvir Pai (1)
    Anurag Ayachit (2)
    S. M. Abdul Khader (1)
    K. A. Ahmed (3)
    V. R. K. Rao (2)
    S. Ganesh Kamath (4)
    P. D. Gupta (5)

    1. Department of Mechanical Engineering, MIT, Manipal, India
    2. Department of Radio-Diagnosis & Imaging, KMC, Manipal, India
    3. Department of Aerospace Engineering, UPM, Serdang, Malaysia
    4. Department of Cardio-Vascular & Thoracic Surgery, KMC, Manipal, India
    5. MCOPS, Manipal, India
  • ISSN:1879-5447
文摘
Gravity associated with postural changes has a strong bearing on haemodynamics of blood flow in arteries. Its effect on stenosed cases has not been widely investigated. In the present study, variation observed in blood flow during postural changes is investigated for different conditions like standing, sleeping and head-down position. A fluid structure interaction study is carried out for idealized normal and 75?% eccentric and concentric stenosed common carotid normal artery. The results clearly indicate the effects of altered gravity on flow conditions. It was found to be very significant during head-down position and demonstrated very high arterial blood pressure in stenosed common carotid when compared with normal carotid.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700