Performance Evaluation and Implementation of FPGA Based SGSF in Smart Diagnostic Applications
详细信息    查看全文
  • 作者:Shivangi Agarwal ; Asha Rani ; Vijander Singh ; A. P. Mittal
  • 关键词:FPGA based Savitzky Golay Smoothing Filter (FPGA ; SGSF) ; COR (correlation coefficient) ; SSNR (Signal ; to ; signal ; plus ; noise ratio) ; SNRI (SNR improvement) ; Field Programmable Gate Array (FPGA)
  • 刊名:Journal of Medical Systems
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:40
  • 期:3
  • 全文大小:1,990 KB
  • 参考文献:1.Kligfield, P., Gettes, L., Bailey, J., Childers, R., Deal, B., Hancock, W., Herpen, G., Kors, J., Macfarlane, P., Mirvis, D., Pahlm, O., et al., Recommendations for the standardization and interpretation of the electrocardiogram, Part I. The electrocardiogram and its technology. J. Am. Coll. Cardiol. 49:1109鈥?127, 2007.CrossRef PubMed
    2.Tabakov, S., Iliev, I., and Krasteva, V., Online digital filter and QRS detector applicable in low resource ecg monitoring systems. Ann. Biomed. Eng. 36(11):1805鈥?815, 2008.CrossRef PubMed
    3.Widmann, A., Schroger, E., and Maess, B., Digital filter design for electrophysiological data 鈥?a practical approach. J. Neurosci. Methods 250:34鈥?6, 2014.CrossRef PubMed
    4.Nitschke, J. B., Miller, G. A., and Cook, E. W., Digital filtering in EEG/ERP analysis: some technical and empirical comparisons. Behav. Res. Methods Instrum. Comput. 30:54鈥?7, 1998.CrossRef
    5.Yadav, J., Rani, A., Singh, V., and Bhaskar, M. M., Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy. Biomed. Signal Process. Control 18:214鈥?27, 2015.CrossRef
    6.Smith, S. W., The scientist and engineer鈥檚 guide to digital signal processing. California Technical Publishing, San Diego, CA. 1st edn, 1997.
    7.Savitzky, A., and Golay, M. J. E., Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36:1627鈥?639, 1964.CrossRef
    8.Frei, M. G., David, R. L., and Osorio, I., Least squares acceleration filtering for the estimation of signal derivatives and sharpness at extrema. IEEE Trans. Biomed. Eng. 46(8):971鈥?77, 1999.CrossRef PubMed
    9.Schafer, R., What is a Savitzky鈥揋olay filter? [Lecture Notes]. IEEE Signal Process. Mag. 28:111鈥?17, 2011.CrossRef
    10.Baba, K., Bahi, L., and Ouadif, L., Enhancing Geophysical signals through the use of Savitzky-Golay filtering method. Geof铆sica Internacional 53(4):399鈥?09, 2014
    11.Balan, S., Khaparde, A., Tank, V., Rade, T., Takalkar, K., Under water noise reduction using wavelet and savitzky-golay. In Second International Conference on Computational Science and Engineering 243鈥?50, 2014. doi:10.鈥?121/鈥媍sit.鈥?014.鈥?421 .
    12.Candan, C., and Inan, H., A unified framework for derivation and implementation of Savitzky鈥揋olay filters. Signal Process. 104:203鈥?11, 2014.CrossRef
    13.Molaee-Ardekani, B., Shamsollahi, M., Tirel, O., Vosoughi-Vahdat, B., Wodey, E., and Senhadji, L., Investigation of the modulation between EEG alpha waves and slow/fast delta waves in children in different depths of desflurane anesthesia. IRBM 31:55鈥?6, 2010.CrossRef
    14.Hofmanis, J., Caspary, O., Louis-Dorr, V., Ranta, R., and Maillard, L., Denoising depth EEG signals during DBS using filtering and subspace decomposition. IEEE Trans. Biomed. Eng. 60:2686鈥?695, 2013.CrossRef PubMed
    15.Hargittai, S., Savitzky-Golay least-squares polynomial filters in ECG signal processing. Comput. Cardiol. 763鈥?66, 2005. doi:10.鈥?109/鈥婥IC.鈥?005.鈥?588216 .
    16.Azami, H., Saraf, M., and Mohammadi, K., A new signal segmentation approach based on singular value decomposition and Intelligent savitzky-golay filter. Commun. Comput. Inform. Sci. Springer 427:212鈥?24, 2014.
    17.Chen, K., Zhang, H., Wei, H., and Li, Y., Improved Savitzky鈥揋olay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra. Appl. Optics 53:5559鈥?569, 2014.CrossRef
    18.Liu, J., Li, S., Li, X., Klein, C., Rymer, W. Z., and Zhou, P., Suppression of stimulus artifact contaminating electrically evoked electromyography. NeuroRehabilitation 34:381鈥?89, 2014.PubMedCentral PubMed
    19.Zarifi, T., and Malek, M., FPGA implementation of image processing technique for blood samples characterization. Comput. Electr. Eng. 40:1750鈥?757, 2014.CrossRef
    20.Bogdan, A., Coca, D., and Beynon, R. J., Peptide mass fingerprinting using field-programmable Gate Arrays. IEEE Trans. Biomed. Circuits Syst. 3(3):142鈥?49, 2009.CrossRef PubMed
    21.Zoltan, G. S., Signal processing using FPGA structures. Procedia Technol. 12:112鈥?14, 2014.CrossRef
    22.Pandya, U. T., and Desai, U. B., A novel algorithm for bluetooth ECG. IEEE Trans. Biomed. Eng. 59(11):3148鈥?154, 2012.CrossRef PubMed
    23.So In, C., Phaudphut, C., and Rujirakul, K., Real-time ECG noise reduction with QRS complex detection for mobile health services. Arab. J. Sci. Eng. 40:2503鈥?514, 2015.CrossRef
    24.Lin, C. T., Lin, F. C., Chen, S. A., et al., EEG-based brain-computer interface for smart living environmental auto- adjustment. J. Med. Biol. Eng. 30(4):237鈥?45, 2010.CrossRef
    25.Erfanian, A., and Mahmoudi, B., Real-time ocular artefact suppression using recurrent neural network for electro- encephalogram based brain鈥揷omputer interface. Med. Biol. Eng. Comput. 43:296鈥?05, 2005.CrossRef PubMed
    26.Erfanian, A., and Mahmoudi, B., Real-time eye blink suppression using neural adaptive filters for eeg-based brain computer interface. in Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference. Proc Second Joint 1:44鈥?5, 2002. doi:10.鈥?109/鈥婭EMBS.鈥?002.鈥?134379 .
    27.Elgendi, M., Eskofier, M., Dokos, S., and Abbott, D., Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems. PLoS One 9(1):e84018, 2014. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?084018 .PubMedCentral CrossRef PubMed
    28.Noh, Y. H., and Jeong, D. U., Implementation of a data packet generator using pattern matching for wearable ECG monitoring systems. Sensors 14:12623鈥?2639, 2014. doi:10.鈥?390/鈥媠140712623 .PubMedCentral CrossRef PubMed
    29.Raeiatibanadkooki, M., Quachani, S. R., Khalilzade, M., and Bahaadinbeigy, K., Real time processing and transferring ECG signal by a mobile phone. Acta Inform. Med. 22(6):389鈥?92, 2014.PubMedCentral CrossRef PubMed
    30.Song, J., Shan, T., Zhu, S., Chiu, Y., A motion-artifact tracking and compensation technique for dry-contact EEG monitoring system. Signal Process. Med. Biol Symp. (SPMB), IEEE, 2014. doi:10.鈥?109/鈥婼PMB.鈥?014.鈥?002951 .
    31.Pradeep, S., and Padmajothi, V., Brain controlled smart home network based on cognitive state. Int. J. Emerg. Technol. Comput. Sci. Electron. 13:59鈥?2, 2015.
    32.Lin, C. T., Chen, Y. C., Huang, T. Y., Chiu, T. T., Ko, L. W., et al., Development of wireless brain computer interface with embedded multitask scheduling and its application on real-time driver鈥檚 drowsiness detection and warning. IEEE Trans. Biomed. Eng. 55(5):1582鈥?591, 2008.CrossRef PubMed
    33.Kim, J. H., Park, S. E., Lee, J. W., and Kim, K. S., Design and implementation of digital filters for mobile healthcare applications. Int. J. Electron. Electr. Eng. 2(1):75鈥?9, 2014. doi:10.鈥?2720/鈥媔jeee.鈥?.鈥?.鈥?5-79 .CrossRef
    34.Kuo, S. M., Lee, B. H., and Tian, W., Real-time digital signal processing: fundamentals, implementations and application. Wiley, London, 2013.
    35.Chowdhury, S. R., and Saha, H., A high-performance FPGA-based fuzzy processor architecture for medical diagnosis. IEEE Micro 28(5):38鈥?2, 2008. doi:10.鈥?109/鈥婱M.鈥?008.鈥?3 .CrossRef
    36.Chowdhury, S. R., Chakrabarti, D., and Saha, H., FPGA realization of a smart processing system for clinical diagnostic applications using pipelined data path architectures. Microprocess. Microsyst. 32:107鈥?20, 2008.CrossRef
    37.Chowdhury, S. R., Chakrabarti, D., and Saha, H., Medical diagnosis using adaptive perceptive particle swarm optimization and its hardware realization using field programmable gate array. J. Med. Syst. 33:447鈥?65, 2009. doi:10.鈥?007/鈥媠10916-008-9206-0 .CrossRef PubMed
    38.Orfanidis, S. J., Introduction to signal processing. Prentice Hall, Englewood Cliffs, 1996.
    39.Lee, M. H., Shyu, K. K., Lee, P. L., Huang, C. M., and Chiu, Y. J., Hardware implementation of EMD using DSP and FPGA for online signal processing. IEEE Trans. Ind. Electron. 58:2473鈥?481, 2011. doi:10.鈥?109/鈥婽IE.鈥?010.鈥?060454 .CrossRef
    40.Mateo, J., Torres, A. M., Soria, C., and Santos, L., A method for removing noise from continuous brain signal recordings. Comput. Electr. Eng. 39:1561鈥?570, 2013.CrossRef
    41.Sameni, R., Shamsollahi, M. B., Jutten, C., and Clifford, G. D., A nonlinear bayesian filtering framework for ECG denoising. IEEE Trans. Biomed. Eng. 54(12):2172鈥?185, 2007.CrossRef PubMed
    42.Wu, Y., Rangayyan, R. M., Zhouc, Y., and Ngd, S. C., Filtering electrocardiographic signals using an unbiased and normalized adaptive noise reduction system. Med. Eng. Phys. 31(1):17鈥?6, 2009.CrossRef PubMed
    43.MIT-BIH and CHB-MIT database. http://鈥媝hysionet.鈥媜rg/鈥媍gi-bin/鈥媋tm/鈥婣TM . Accessed 15 September 2014.
    44.Zhao, A. X., Tang, X. J., Zhang, Z. H., Liu, J. H., The parameters optimization selection of Savitzky-Golay filter and its application in smoothing pretreatment for FTIR spectra. IEEE 9th Conf. Ind. Electron. Appl. (ICIEA). 516鈥?21. doi:10.鈥?109/鈥婭CIEA.鈥?014.鈥?931218 , 2014.
    45.Shin, W., Cha, Y. D., and Yoon, G., ECG/PPG integer signal processing for a ubiquitous health monitoring system. J. Med. Syst. 34:891鈥?98, 2010. doi:10.鈥?007/鈥媠10916-009-9304-7 .CrossRef PubMed
    46.HDL Coder User鈥檚 Guide. http://鈥媍n.鈥媘athworks.鈥媍om/鈥媓elp/鈥媝df_鈥媎oc/鈥媓dlcoder/鈥媓dlcoder_鈥媢g.鈥媝df . Accessed 10 August 2014.
  • 作者单位:Shivangi Agarwal (1)
    Asha Rani (1)
    Vijander Singh (1)
    A. P. Mittal (1)

    1. Instrumentation and Control Engineering Division, NSIT, University of Delhi, Sec-3 Dwarka, New Delhi, India
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Statistics
    Statistics for Life Sciences, Medicine and Health Sciences
    Health Informatics and Administration
  • 出版者:Springer Netherlands
  • ISSN:1573-689X
文摘
The main objective of the paper is to implement Savitzky Golay Smoothing Filter (SGSF) so as to apply in pre-processing of real time smart medical diagnostic systems. As very important information of EEG and ECG waveforms lies in the peak of the signal, hence it becomes absolutely necessary to filter noise and artifacts from the signal. The implemented filter should be able to reject the noise efficiently along with the least distortion from the original signal. The shape preserving characteristics of the filter are determined by introducing different noise levels in the signal. The designed filter is tested on synthetic signals of EEG and ECG by adding different types of noise and the performance is analysed on various parameters, i.e., SNR, SSNR, SNRI, MSE, COR and signal distortion of the final output. The smoothing performance comparison of SGSF with the most commonly used Moving Average Filter (MAF) proves that SGSF is more efficient. Hence it is suggested that MAF can be replaced by SGSF. For real time issues, it is further implemented on reconfigurable architectures so as to achieve high speed, low cost, low power consumption and less area. Therefore SGSF is realized on FPGA platform to combine the advantages of both. Real time EEG and ECG signals are also considered for experimentation. The experimental results show that the proposed methodology (FPGA-SGSF) significantly reduces the processing time and preserves the actual features of the signal. Keywords FPGA based Savitzky Golay Smoothing Filter (FPGA-SGSF) COR (correlation coefficient) SSNR (Signal-to-signal-plus-noise ratio) SNRI (SNR improvement) Field Programmable Gate Array (FPGA)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700