Feedrate optimization based on hybrid forward-reverse mappings of artificial neural networks for five-axis milling
详细信息    查看全文
文摘
With recent advances in five-axis milling technology, feedrate optimization methods have shown significant effects in regard to enhancing milling productivity, especially when machining complex surface parts. The existing study is aimed at calculating the optimal feedrate values through modeling milling processes. However, due to the complexity of five-axis milling processes, optimization efficiency is the bottleneck of applying them in practice. This paper proposes a novel milling process optimization method based on hybrid forward-reverse mappings (HFRM) of artificial neural networks. The feedrate values are directly used as the outputs of network mappings. Three kinds of artificial neural networks are compared to determine the one with the highest accuracy and the best training efficiency. The study shows that with the collected datasets, the trained Levenberg-Marquardt back-propagation network (LMBPN) could predict feedrate values more precisely than other alternatives. Compared with previous methods, this HFRM-based optimization method is more adept in the area of parameter adjustment because as it has the advantages of high precision and much less calculation time. Combining other multiple milling constraints, an optimization system is developed for five-axis milling processes. The optimized results could be directly used to modify a cutter location (CL) file. A typical milling case was provided to verify the optimization performance of this method, which was found to be effective and reliable.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700