Comparative Developmental Toxicity of Desalination Brine and Sulfate-Dominated Saltwater in a Euryhaline Fish
详细信息    查看全文
  • 作者:Allison Kupsco ; Rafid Sikder ; Daniel Schlenk
  • 刊名:Archives of Environmental Contamination and Toxicology
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:72
  • 期:2
  • 页码:294-302
  • 全文大小:
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Ecotoxicology; Pollution, general; Environmental Health; Environmental Chemistry; Soil Science & Conservation; Monitoring/Environmental Analysis;
  • 出版者:Springer US
  • ISSN:1432-0703
  • 卷排序:72
文摘
Desalination is a promising sustainable solution to meet growing water needs of cities across the United States. However, the environmental impacts of the resulting filtrate (brine) discharged to surface water need to be evaluated before large-scale desalination can be successful in the United States. Developing fish are especially sensitive to changes in salinity and varying ionic composition. Limited research is available on the impacts of hypersalinity on chronic vertebrate embryonic development, particularly on sublethal effects. To investigate this, Japanese medaka (Oryzias latipes) embryos were treated with: (1) graphite filtered freshwater; (2) artificial seawater [17, 35, 42, 56, and 70 parts per thousand (ppt)]; (3) effluent from a desalination facility at Monterey Bay Aquarium, CA, diluted to 75, 50, and 25% with 35 ppt artificial seawater to simulate mixing (39, 42, 46, and 50 ppt); (4) artificial San Joaquin River water (CA, USA) (9, 13, and 17 ppt); and (5) artificial San Joaquin River water diluted to 75, 50, and 25% with artificial seawater to simulate estuarine mixing in the San Francisco Bay (13, 19, 24, and 30 ppt). Percent hatch, survival post hatch, deformities, swim bladder inflation, and median day to hatch were recorded to calculate EC50 (50% effect concentration) and NOEC (no observable effect concentration) values. No significant difference was observed between artificial seawater and Monterey Bay aquarium effluent (EC50 = 45–55 ppt). However, San Joaquin River water decreased survival post hatch and increased deformities in comparison to artificial seawater and San Joaquin River water mixed with seawater, suggesting that unique ion compositions may play a role in embryo and larval toxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700