Complex Formation Study of Binary and Ternary Complexes Including 2,3-Dihydroxybenzoic Acid, N-acetylcysteine and Divalent Metal Ions
详细信息    查看全文
  • 作者:Shella Permatasari Santoso ; Artik Elisa Angkawijaya…
  • 关键词:Stability constant ; Potentiometry ; N ; acetylcysteine ; 2 ; 3 ; dihydroxybenzoic acid ; Divalent metal
  • 刊名:Journal of Solution Chemistry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:45
  • 期:4
  • 页码:518-533
  • 全文大小:2,307 KB
  • 参考文献:1.Avdeef, A., Sofen, S.R., Bregante, T.L., Raymond, K.N.: Coordination isomers of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. J. Am. Chem. Soc. 100, 5362–5370 (1978)CrossRef
    2.Graziano, J.H., Grady, R.W., Cerami, A.: The identification of 2,3-dihydroxybenzoic acid as a potentially useful iron-chelating drug. J. Pharmacol. Exp. Ther. 190, 570–575 (1974)
    3.George, S., Benny, P.J., Kuriakose, S., George, C., Gopalakrishnan, S.: Antiprotozoal activity of 2,3-dihydroxybenzoic acid isolated from the fruit extracts of Flacourtia inermis Robx. Asian J. Pharm. Clin. Res. 3, 237–241 (2011)
    4.Sousa, M., Ousingsawat, J., Seitz, R., Puntheeranurak, S., Regalado, A., Schmidt, A., Grego, T., Jansakul, C., Amaral, M.D., Schreiber, R., Kunzelmann, K.: An extract from the medicinal plant Phyllanthus acidus and its isolated compounds induce airway chloride secretion: a potential treatment for cystic fibrosis. Mol. Pharmacol. 71, 366–376 (2006)CrossRef
    5.Grootveld, M., Halliwell, B.: 2,3-Dihydroxybenzoic acid is a product of human aspirin metabolism. Biochem. Pharmacol. 37, 271–280 (1988)CrossRef
    6.Paterson, J.R., Blacklock, C., Campbell, G., Wiles, D., Lawrence, J.R.: The identification of salicylates as normal constituents of serum: a link between diet and health? J. Clin. Pathol. 51, 502–505 (1998)CrossRef
    7.Bellaire, B.H., Elzer, P.H., Baldwin, C.L., Roop, R.M.: Production of the siderophore 2,3-dihydroxybenzoic acid is required for wild-type growth of Brucella abortus in the presence of erythritol under low-iron conditions in vitro. Infect. Immun. 71, 2927–2832 (2003)
    8.Cam, T., Irez, G., Aydin, R.: Determination of stability constants of mixed ligand complexes of the lanthanum(III) ion and identification of structures. J. Chem. Eng. Data 56, 1813–1820 (2011)CrossRef
    9.Hirpaye, B.Y., Rao, G.N.: Chemical speciation of 2,3-dihydroxybenzoic acid complexes with some biologically essential metal ions in 1,2-propanediol–water mixtures. Chem. Spec. Biolavailab. 25, 179–186 (2013)CrossRef
    10.Turkel, N., Berker, M., Ozer, U.: Potentiometric and spectroscopic studies on aluminium(III) complexes of some catechol derivatives. Chem. Pharm. Bull. 52, 929–934 (2004)CrossRef
    11.Lajunen, L.H.J., Portanova, R., Piispanen, J., Tolazzi, M.: Stability constants for alpha-hydroxycarboxylic acid complexes with protons and metal ions and the accompanying enthalpy changes. Part I: Aromatic ortho-hydroxycarboxylic acids. Pure Appl. Chem. 69, 329–381 (1997)CrossRef
    12.Lotfi, S., Mazloum-Ardakani, M., Ghasemi, J.B.: Potentiometric study of protonation and complex formation of some amino acids with Zn(II), Co(II) and Ni(II) in aqueous solution. J. Iran. Chem. Res. 2, 247–255 (2009)
    13.Brosnan, J.T., Brosnan, M.E.: The sulfur-containing amino acids: an overview. J. Nutr. 136, 1636–1640 (2006)
    14.Geier, D.A., Geier, M.R.: A clinical and laboratory evaluation of methionine cycle-transsulfuration and androgen pathway markers in children with autistic disorders. Horm. Res. 66, 182–188 (2006)CrossRef
    15.Jozefczak, M., Remans, T., Vangronsveld, J., Cuypers, A.: Glutathione is a key player in metal-induced oxidative stress defenses. Int. J. Mol. Sci. 13, 3145–3175 (2013)CrossRef
    16.Ozcelik, D., Uzun, H., Naziroglu, M.: N-Acetylcysteine attenuates copper overload-induced oxidative injury in brain of rat. Biol. Trace Elem. Res. 147, 292–298 (2012)CrossRef
    17.Parcell, S.: Sulfur in human nutrition and applications in medicine. Altern. Med. Rev. 7, 22–44 (2002)
    18.Atkuri, K.R., Mantovani, J.J., Herzenberg, L.A.: N-Acetylcysteine—a safe antidote for cysteine/glutathione deficiency. Curr. Opin. Pharmacol. 7, 355–359 (2007)CrossRef
    19.Chen, W., Ercal, N., Huynh, T., Volkov, A., Chusuei, C.C.: Characterizing N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA) binding for lead poisoning treatment. J. Colloid Interface Sci. 171, 144–149 (2012)CrossRef
    20.Dilger, R.N., Baker, D.H.: Oral N-acetyl-l -cysteine is a safe and effective precursor of cysteine. J. Anim. Sci. 85, 1712–1718 (2007)CrossRef
    21.Samuni, Y., Goldstein, S., Dean, O.M., Berk, M.: The chemistry and biological activities of N-acetylcysteine. Biochim. Biophys. Acta 1830, 4117–4129 (2013)CrossRef
    22.Zafarullah, M., Li, W.Q., Sylvester, J., Ahmad, M.: Molecular mechanisms of N-acetylcysteine action. Cell. Mol. Life Sci. 60, 6–20 (2003)CrossRef
    23.Santoso, S.P., Chandra, I.K., Soetaredjo, F.E., Angkawijaya, A.E., Ju, Y.-H.: Equilibrium studies of complexes between N-acetylcysteine and divalent metal ions in aqueous solutions. J. Chem. Eng. Data 59, 1661–1666 (2014)CrossRef
    24.Gans, P., O’Sullivan, B.: GLEE, a new computer program for glass electrode calibration. Talanta 51, 33–37 (2000)CrossRef
    25.Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996)CrossRef
    26.Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999)CrossRef
    27.Gans, P., Sabatini, A., Vacca, A.: Determination of equilibrium constants from spectrophometric data obtained from solutions of known pH: the program pHab. Ann. Chim. 89, 45–49 (1999)
    28.Kiss, T., Kozlowski, H., Micera, G., Erre, L.S.: Copper(II) complexes of 2,3-dihydroxybenzoic acid. J. Coord. Chem. 20, 49–56 (1989)CrossRef
    29.Pettit, L.D., Powell, K.J.: A comprehensive database of published data on equilibrium constants of metal complexes and ligands. IUPAC and Academic Software (2001)
    30.Sahoo, S.K., Bera, R.K., Baral, M., Kanungo, B.K.: Spectroscopic and potentiometric study of 2,3-dihydroxybenzoic acid and its complexation with La(III) ion. Acta Chim. Slov. 55, 243–247 (2008)
    31.Irving, H., Williams, R.J.P.: The stability of transition-metal complexes. J. Chem. Soc. 3192–3210 (1953)
    32.Frank, P., Benfatto, M., Szilagyi, R.K., D’Angelo, P., Longa, S.D., Hodgson, K.O.: The solution structure of [Cu(aq)]2+ and its implications for rack-induced bonding in blue copper protein active sites. Inorg. Chem. 44, 1922–1933 (2005)CrossRef
    33.Aljahdali, M., El-Sherif, A.A., Shoukry, M.M., Mohamed, S.E.: Potentiometric and thermodynamic studies of binary and ternary transition metal(II) complexes of imidazole-4-acetic acid and some bio-relevant ligands. J. Solution Chem. 42, 1028–1050 (2013)CrossRef
    34.Graddon, D.P.: An Introduction to Co-ordination Chemistry, vol. 3. Pergamon Press, Canada (1968)
    35.Ammar, R.A., Al-Mutiri, E.M., Abdalla, M.A.: The determination of the stability constants of mixed ligand complexes of adenine and amino acids with Ni(II) by potentiometric titration method. J. Fluid. 301, 51–55 (2011)
    36.Angkawijaya, A.E., Fazary, A.E., Ismadji, S., Ju, Y.-H.: Cu(II), Co(II), and Ni(II)–antioxidative phenolate–glycine peptide systems: an insight into its equilibrium solution study. J. Chem. Eng. Data 57, 3443–3451 (2012)CrossRef
    37.Hernowo, E., Angkawijaya, A.E., Fazary, A.E., Ismadji, S., Ju, Y.H.: Complex stability and molecular structure studies of divalent metal ion with L-norleucine and vitamin B3. J. Chem. Eng. Data 56, 4549–4555 (2011)CrossRef
    38.Shobana, S., Dharmaraja, J., Selvaraj, S.: Mixed ligand complexation of some transition metal ions in solution and solid state: spectral characterization, antimicrobial, antioxidant, DNA cleavage activities and molecular modeling. Spectrochim. Acta Mol. Biomol. Spectros. 107, 117–132 (2013)CrossRef
    39.Sigel, A., Sigel, H., Sigel, R.K.O.: Metal Ions in Biological Systems, Biogeochemical Cycles of Elements, vol. 43. Taylor and Francis, New York (2005)CrossRef
    40.Chandra, I.K., Angkawijaya, A.E., Santoso, S.P., Ismadji, S., Soetaredjo, F.E., Ju, Y.-H.: Solution equilibria studies of complexes of divalent metal ions with 2-aminophenol and 3,4-dihydroxybenzoic acid. Polyhedron 88, 29–39 (2015)CrossRef
  • 作者单位:Shella Permatasari Santoso (1)
    Artik Elisa Angkawijaya (1) (2)
    Suryadi Ismadji (3)
    Aning Ayucitra (3)
    Felycia Edi Soetaredjo (3)
    Tran Nguyen Phuong Lan (4)
    Yi-Hsu Ju (1)

    1. Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei, 106-07, Taiwan
    2. Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115-29, Taiwan
    3. Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya, 60114, Indonesia
    4. Department of Chemical Engineering, Can Tho University, 3-2 Street, Can Tho, Vietnam
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Industrial Chemistry and Chemical Engineering
    Geochemistry
    Oceanography
    Inorganic Chemistry
    Condensed Matter
  • 出版者:Springer Netherlands
  • ISSN:1572-8927
文摘
The binary and ternary complex stability constants between 2,3-dihydroxybenzoic acid (DA) and N-acetylcysteine (Nac) with the divalent metal ions (M) Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were studied in aqueous solution at 310.15 K and an ionic medium of 0.15 mol·dm−3 NaCl. The complexes’ stability constants (log10 β), refined from the potentiometric data using the Hyperquad2008 program, indicate that the ternary complexes are more stable than the binary complexes. The stability constants were supported by additional computation, refined from the spectrophotometric data using the Hypspec program. The values of the ternary complex stability relative to their binary complex (Δlog10 K) and the disproportionation constant (log10 X) indicate that formation of ternary complex species [M(DA)(Nac)]3− is more favorable than that of species formed by two identical ligands, [M(DA)2]4− or [M(Nac)2]2−. For the investigated M, the stability of complexes follows the trend Cu2+ > Zn2+ > Ni2+ > Co2+ > Mn2+.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700