Nickel and Cobalt Complexes of Non-protein L-Norvaline and Antioxidant Ferulic Acid: Potentiometric and Spectrophotometric Studies
详细信息    查看全文
  • 作者:Artik Elisa Angkawijaya (1)
    Ahmed E. Fazary (23) aefazary@gmail.com
    Erzalina Hernowo (1)
    Suryadi Ismadji (4) suryadiismadji@yahoo.com
    Yi-Hsu Ju (1) yhju@mail.ntust.edu.tw
  • 关键词:L ; norvaline – ; Ferulic acid – ; Complexation – ; Equilibria
  • 刊名:Journal of Solution Chemistry
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:41
  • 期:7
  • 页码:1156-1164
  • 全文大小:517.2 KB
  • 参考文献:1. Zoroddu, M.A., Peana, M., Kowalik-Jankowska, T., Kozlowski, H., Costa, M.: Nickel(II) binding to Cap43 protein fragments. J. Inorg. Biochem. 98, 931–939 (2004)
    2. Kobayashi, M., Shimizu, S.: Cobalt proteins. Eur. J. Biochem. 261, 1–9 (1999)
    3. Piero, S.D., Melchior, A., Polese, P., Portanova, R., Tolazzi, M.: Mixed nitrogen/oxygen ligand affinities for bipositive metal ions and dioxygen binding to cobalt(II) complexes. Dalton Trans. 1358–1365 (2004)
    4. Rodionov, D.A., Hebbeln, P., Gelfand, M.S., Eitinger, T.: Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J. Bacteriol. 188, 317–327 (2006)
    5. Mulrooney, S.B., Hausinger, R.P.: Nickel uptake and utilization by microorganisms. FEMS Microbiol. Rev. 27, 239–261 (2003)
    6. Bukhari, I.H., Hassan, M.N., Haleem, A., Bhatti, M.M.: Role of metals (cadmium and lead) in patients of hypertension and their relationship with ischemic heart disease. J. Agric. Biol. Sci. 1(2), 190–194 (2005)
    7. Crichton, R.R.: Biological Inorganic Chemistry: An Introduction. Elsevier, Amsterdam (2008)
    8. Duda-Chodak, A., Blaszczyk, U.: The impact of nickel on human health. J. Elem. 13, 685–696 (2008)
    9. Toxicological Profile for Nickel. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Atlanta, Georgia (2005)
    10. Verougstraete, V., Mallants, A., Buchet, J.-P., Swennen, B., Lison, D.: Lung function changes in workers exposed to cobalt compounds. Am. J. Respir. Crit. Care Med. 170, 162–166 (2004)
    11. Toxicological Profile for Cobalt. Agency for Toxic Substances and Disease Registry, Atlanta, Georgia (2004)
    12. Mosconi, G., Bacis, M., Leghissa, P., Sala, C.: Occupational exposure to metallic cobalt. In: Cheremisinoff, P.N., Cheremisinoff, N.P. (eds.) Advances in Environmental Control Technology: Health and Toxicology. Elsevier, Amsterdam (1997)
    13. Andersen, O.: Principles and recent developments in chelation treatment of metal intoxication. Chem. Rev. 99, 2683–2710 (1999)
    14. Flora, S.J.S., Pachauri, V.: Chelation in metal intoxication. Int. J. Environ. Res. Public Health 7, 2745–2788 (2010)
    15. Flora, S.J.S., Gubrelay, U., Kannan, G.M., Mathur, R.: Effects of zinc supplementation during chelating agent administration in cadmium intoxication in rats. J. Appl. Toxicol. 18, 357–362 (1998)
    16. Angkawijaya, A.E., Fazary, A.E., Hernowo, E., Taha, M., Ju, Y.-H.: Iron(III), chromium(III), and copper(II) complexes of L-norvaline and ferulic acid. J. Chem. Eng. Data 56, 532–540 (2011)
    17. Borges, F., Lima, J.L.F.C., Pinto, I., Reis, S., Siquet, C.: Application of a potentiometric system with data analysis computer programs to the quantification of metal-chelating activity of two natural antioxidants: caffeic acid and ferulic acid. Helv. Chim. Acta 86, 3081–3087 (2003)
    18. Gergely, A., Sovago, I., Nagypal, I., Kiraly, R.: Equilibrium relations of alpha-aminoacid mixed complexes of transition metal ions. Inorg. Chim. Acta 6, 435–439 (1972)
    19. Rao, A.K., Mohan, M.S.: Physicochemical studies on ternary complexes containing adenosine-5′-triphosphate, divalent metal ions and selected biomolecules. Proc. Indian Acad. Sci., Chem. Sci. 101, 1–7 (1989)
    20. Tewari, B.B.: Studies on biologically important copper(II)/manganese(II)/uranyl (II)–norvaline binary complexes. Maced. J. Chem. Chem. Eng. 27(2), 157–162 (2008)
    21. Bottei, R.S., Schneggenburger, R.G.: Thermogravimetric study of some divalent transition metal chelates of several amino acids. J. Therm. Anal. 2, 11–23 (1970)
    22. Shoukry, M.M.: Potentiometric studies of the complex formation between trimethyltin(IV) and some selected amino acids. J. Inorg. Biochem. 48, 271–277 (1992)
    23. Ming, X.F., Rajapakse, A.G., Carvas, J.M., Ruffieux, J., Yang, Z.: Inhibition of S6K1 accounts partially for the anti-inflammatory effects of the arginase inhibitor L-norvaline. BMC Cardiovasc. Disords. 9(12) (2009). doi:10.1186/1471-2261-9-12
    24. Sit, C.S., Vederas, J.C.: Approaches to the discovery of the new antibacterial agents based on bacteriocins. Biochem. Cell Biol. 86, 116–123 (2008)
    25. Kisumi, M., Sugiura, M., Takagi, T., Chibata, I.: Norvaline accumulation by regulatory mutants of Serratia marcescens. J. Antibiot. 30, 111–117 (1977)
    26. Soini, J., Falschlehner, C., Liedert, C., Bernhardt, J., Vuoristo, J., Neubauer, P.: Norvaline is accumulated after a down-shift of oxygen in Escherichia coli W3110. Microb. Cell Fact. 7(30) (2008). doi:10.1186/1475-2859-7-30
    27. Tagashira, M., Nozato, N., Isonishi, S., Okamoto, A., Ochiai, K., Ohtake, Y.: 5-Hydroxy-4-oxo-L-norvaline depletes intracellular glutathione: a new modulator of drug resistance. Biosci. Bitechnol. Biochem. 63, 1953–1958 (1999)
    28. Jiang, J.D., Zhang, H., Li, J.N., Roboz, J., Qiao, W.B., Holland, J.F., Bekesi, G.: High anticancer efficacy of L-proline-m-bis(2-chloroethyl) amino-L-phenylalanyl-L-norvaline ethyl ester hydrochloride (MF13) in vivo. Anticancer Res. 21(3B), 1681–1689 (2001)
    29. Cooney, D.A., Jayaram, H.N., Milman, H.A., Homan, E.R., Pittillo, R., Geran, R.I., Ryan, J., Rosenbluth, R.J.: DON, CONV and DONV-III. Pharmacologic and toxicologic studies. Biochem. Pharmacol. 25, 1859–1870 (1976)
    30. Robbins, R.J.: Phenolic acids in foods: an overview of analytical methodology. J. Agric. Food Chem. 51, 2866–2887 (2003)
    31. Srinivasan, M., Sudheer, A.R., Menon, V.P.: Ferulic acid: therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 40, 92–100 (2006)
    32. Simonyan, A.V.: Activity of cinnamic acid derivatives and new methods for their synthesis (review). Pharm. Chem. J. 27, 92–100 (1993)
    33. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996)
    34. Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999)
    35. Casolaro, M., Anselmi, C., Picciocchi, G.: The protonation thermodynamics of ferulic acid/γ-cyclodextrin inclusion compounds. Thermochim. Acta 425, 143–147 (2005)
    36. Ozkorucuklu, S.P., Beltran, J.L., Fonrodona, G., Barr贸n, D., Alsancak, G., Barbosa, J.: Determination of dissociation constants of some hydroxylated benzoic and cinnamic acids in water from mobility and spectroscopic data obtained by CE-DAD. J. Chem. Eng. Data 54, 807–811 (2009)
    37. Kiss, T., Sovago, I., Gergely, A.: Critical survey of stability constants of complexes of glycine. Pure Appl. Chem. 63, 597–638 (1991)
    38. Perrin, D.D.: Stability Constants of Metal Ions Complexes. Part B: Organic Ligands. Pergamon, Oxford (1979)
    39. Khatoon, Z., Uddin, K.: Potentiometric investigations on the cadmium(II)–amino acid–imidazole systems (amino acid = glycine, DL-alanine or DL-valine). Polyhedron 9, 2437–2442 (1990)
    40. Irving, H., Williams, R.J.P.: The stability of transition metal complexes. J. Chem. Soc., 3192–3210 (1953)
    41. Nicholls, D.: Complexes and First-Row Transition Elements. Am. Elsevier, New York (1975)
    42. Gispert, J.R.: Coordination Chemistry. Wiley-VCH, Weinheim (2008)
    43. Basolo, F., Johnson, R.C.: Coordination Chemistry: The Chemistry of Metal Complexes, vol. 35. Benjamin, Menlo Park (1964)
  • 作者单位:1. Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei, 106-07 Taiwan2. Chemistry Department, Faculty of Science, King Khalid University, Abha, 9004 Saudi Arabia3. Applied Research Sector, Egyptian Organization for Biological Products and Vaccines, Cairo, Egypt4. Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya, 60114 Indonesia
  • ISSN:1572-8927
文摘
Binary and mixed-ligand complexes of Ni2+ and Co2+ involving L-norvaline (Nva) and ferulic acid (FA) have been investigated in aqueous solutions by pH potentiometry and UV–visible spectrophotometric techniques, at 298.15 K and fixed ionic strength (0.15 mol⋅dm−3, NaNO3). The overall stability constants of the Ni2+ and Co2+ complexes with the ligands studied were obtained by the HYPERQUAD2008 program from the pH-potentiometric data. As a result of the numerical treatment, a model composed of seven species NiNva+, NiNva2, NiNvaH−1, NiNva - 2 -\mathrm{NiNva}_{ - 2}^{ -}, NiFA, NiFAH - 1 -\mathrm{NiFAH}_{ - 1}^{ -} and NiNvaFA− was obtained for the Ni2++Nva+FA system, whereas for the Co2++Nva+FA system the complexes CoNva+, CoNva2, CoNvaH−1, CoNvaH - 2 -\mathrm{CoNvaH}_{ - 2}^{ -}, CoFA, CoFAH - 1 -\mathrm{CoFAH}_{ - 1}^{ -}, and CoNvaFA− were obtained. The complex species distributions in certain pH ranges were calculated by the HySS2009 simulation program. Spectroscopic UV–visible measurements were carried out to give qualitative information about the complexes formed in these solutions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700