Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation
详细信息    查看全文
  • 作者:Varongsiri Kemsawasd ; Tiago Viana ; Ylva Ardö…
  • 关键词:Saccharomyces cerevisiae ; Non ; Saccharomyces species ; Nitrogen sources ; Oxygen ; limited fermentation
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:99
  • 期:23
  • 页码:10191-10207
  • 全文大小:1,266 KB
  • 参考文献:Albers E, Larsson C, Lidén G, Niklasson C, Gustafsson L (1996) Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol 62:3187–3195PubMedCentral PubMed
    Albertin W, Chasseriaud L, Comte G, Panfili A, Delcamp A, Salin F, Marullo P, Bely M (2014) Winemaking and bioprocesses strongly shaped the genetic diversity of the ubiquitous yeast Torulaspora delbrueckii. PLoS ONE 9:e94246. doi:10.​1371/​journal.​pone.​0094246
    Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103. doi:10.​1016/​S0014-5793(01)02503-0 CrossRef PubMed
    Andorrà I, Berradre M, Mas A, Esteve-Zarzoso B, Guillamón JM, Rozès N (2010) Effect of pure and mixed cultures of the main wine yeast species on grape must fermentations. Eur Food Res Technol 231:215–224. doi:10.​1007/​s00217-010-1272-0 CrossRef
    Andorrà I, Berradre M, Mas A, Esteve-Zarzoso B, Guillamón JM (2012) Effect of mixed culture fermentations on yeast populations and aroma profile. LWT Food Sci Technol 49:8–13. doi:10.​1016/​j.​lwt.​2012.​04.​008 CrossRef
    Banerjee A, Ganesan K, Datta A (1991) Induction of secretory acid proteinase in Candida albicans. J Gen Microbiol 137:2455–2461CrossRef PubMed
    Banks MK, Bryers J (1990) Cryptic growth within a binary microbial culture. Appl Microbiol Biotechnol 33:596–601
    Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23:277–294. doi:10.​1016/​0168-1605(94)90157-0 CrossRef PubMed
    Bell S-J, Henschke P (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res 11:242–925. doi:10.​1111/​j.​1755-0238.​2005.​tb00028.​x CrossRef
    Bely M, Sablayrolles J-M, Barre P (1990) Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J Ferment Bioeng 70:246–252. doi:10.​1016/​0922-338X(90)90057-4 CrossRef
    Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50:107–119
    Blomqvist J, Nogué VS, Gorwa-Grauslund M, Passoth V (2012) Physiological requirements for growth and competitiveness of Dekkera bruxellensis under oxygen limited or anaerobic conditions. Yeast 265-274. doi: 10.​1002/​yea
    Boulton RB, Singleton VL, Bisson LF, Kunkee RE (1996) Yeast and biochemistry of ethanol fermentation. In: Boulton RB (ed) Principles and practices of winemaking. Chapman & Hall, New York, pp. 139–172. doi:10.​1007/​978-1-4615-1781-8 CrossRef
    Brice C, Sanchez I, Bigey F, Legras JL, Blondin B (2014) A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen signaling. BMC Genomics 15:495–414. doi:10.​1186/​1471-2164-15-495 PubMedCentral CrossRef PubMed
    Bütikofer U, Ardö Y (1999) Quantitative determination of free amino acids in cheese. Bulletin 337. International Dairy Federation, Brussels, pp. 24–32
    Charrad M, Ghazzali N, Boiteau V, Niknafs A (2013) NbClust: an examination of indices for determining the number of clusters: NbClust Package. R package version 1.4. http://​CRAN.​R-project.​org/​package=​NbClust
    Ciani M, Beco L, Comitini F (2006) Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations. Int J Food Microbiol 108:239–245. doi:10.​1016/​j.​ijfoodmicro.​2005.​11.​012 CrossRef PubMed
    Ciani M, Comitini F, Mannazzu I, Domizio P (2010) Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res 10:123–133. doi:10.​1111/​j.​1567-1364.​2009.​00579.​x CrossRef PubMed
    Cooper TG (1982) Nitrogen metabolism in Saccharomyces cerevisiae. Cold Spring Harb Monogr Arch 11B:39–99. doi:10.​1101/​087969180.​11B.​39
    Dabas N, Morschhäuser J (2008) A transcription factor regulatory cascade controls secreted aspartic protease expression in Candida albicans. Mol Microbiol 69:586–602. doi:10.​1111/​j.​1365-2958.​2008.​06297.​x CrossRef PubMed
    de Mendiburu F (2014) Agricolae: statistical procedures for agricultural research. R package version 1. 1–8. http://​CRAN.​R-project.​org/​package=​agricolae
    Freese S, Vogts T, Speer F, Schäfer B, Passoth V, Klinner U (2011) C- and N-catabolic utilization of tricarboxylic acid cycle-related amino acids by Scheffersomyces stipitis and other yeasts. Yeast 28:375–390. doi:10.​1002/​yea.​1845 CrossRef PubMed
    Georis I, Feller A, Vierendeels F, Dubois E (2009) The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation. Mol Cell Biol 29:3803–3815. doi:10.​1128/​MCB.​00399-09 PubMedCentral CrossRef PubMed
    Gobbi M, De Vero L, Solieri L, Comitini F, Oro L, Giudici P, Ciani M (2014) Fermentative aptitude of non-Saccharomyces wine yeast for reduction in the ethanol content in wine. Eur Food Res Technol 239:41–48
    Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27:3065–3086. doi:10.​1128/​MCB.​01084-06 PubMedCentral CrossRef PubMed
    Gonzalez R, Quirós M, Morales P (2013) Yeast respiration of sugars by non-Saccharomyces yeast species: a promising and barely explored approach to lowering alcohol content of wines. Trends Food Sci Technol 29:55–61. doi:10.​1016/​j.​tifs.​2012.​06.​015 CrossRef
    Gutiérrez A, Chiva R, Sancho M, Beltran G, Arroyo-López FN, Guillamon JM (2012) Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must. Food Microbiol 31:25–32. doi:10.​1016/​j.​fm.​2012.​02.​012 CrossRef PubMed
    Gutiérrez A, Beltran G, Warringer J, Guillamón JM (2013) Genetic basis of variations in nitrogen source utilization in four wine commercial yeast strains. PLoS One 8:e67166. doi:10.​1371/​journal.​pone.​0067166 PubMedCentral CrossRef PubMed
    Harrell FE, Dupont C, unknown authors (2014) Hmisc: Harrell Miscellaneous. R package version 3.14–13. http://​CRAN.​R-project.​org/​package=​Hmisc
    Henschke PA, Jiranek V (1993) Yeasts-metabolism of nitrogen compounds. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic, Chur, pp. 77–164
    Heux S, Sablayrolles J-M, Cachon R, Dequin S (2006) Engineering a Saccharomyces cerevisiae wine yeast that exhibits reduced ethanol production during fermentation under controlled microoxygenation conditions. Appl Environ Microbiol 72:5822–5828. doi:10.​1128/​AEM.​00750-06 PubMedCentral CrossRef PubMed
    Jiranek V, Langridge P, Henschke PA (1995) Amino acid and ammonium utilization by Saccharomyces cerevisiae wine yeasts from a chemically defined medium. Am J Enol Vitic 46:75–83
    Jolly NP, Varela C, Pretorius IS (2014) Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res 14:215–237. doi:10.​1111/​1567-1364.​12111 CrossRef PubMed
    Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3:417–432. doi:10.​1016/​S1567-1356(03)00012-6 CrossRef PubMed
    Kutyna DR, Varela C, Henschke PA, Chambers PJ, Stanley GA (2010) Microbiological approaches to lowering ethanol concentration in wine. Trends Food Sci Technol 21:293–302. doi:10.​1016/​j.​tifs.​2010.​03.​004 CrossRef
    Ljungdahl PO, Daignan-Fornier B (2012) Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190:885–929. doi:10.​1534/​genetics.​111.​133306 PubMedCentral CrossRef PubMed
    Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18. doi:10.​1016/​S0378-1119(02)00558-9 CrossRef PubMed
    Martínez-Moreno R, Morales P, Gonzalez R, Mas A, Beltran G (2012) Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source. FEMS Yeast Res 12:477–485. doi:10.​1111/​j.​1567-1364.​2012.​00802.​x CrossRef PubMed
    Mason CA, Hamer G (1987) Cryptic growth in Klebsiella pneumoniae. Appl Microbiol Biotechnol 25:577–584
    Merico A, Sulo P, Piskur J, Compagno C (2007) Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J 274:976–989. doi:10.​1111/​j.​1742-4658.​2007.​05645.​x CrossRef PubMed
    Nissen P, Nielsen D, Arneborg N (2003) Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell-cell contact-mediated mechanism. Yeast 20:331–341. doi:10.​1002/​yea.​965 CrossRef PubMed
    Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J (1999) Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 15:191–203. doi:10.​1002/​(SICI)1097-0061(199902)15:​3<191:​:​AID-YEA358>3.​0.​CO;2-O CrossRef PubMed
    Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729. doi:10.​1002/​1097-0061(20000615)16:​8<675:​:​AID-YEA585>3.​0.​CO;2-B CrossRef PubMed
    Reed G, Nagodawithana T (1990) Wine yeasts. In: Reed G, Nagodawithana T (eds) Yeast technology, 2nd edn. Van Nostrand Reinhold, New York, pp 151-224. doi: 10.​1007/​978-94-011-9771-7_​5
    Reid VJ, Theron LW, Toit du M, Divol B (2012) Identification and partial characterization of extracellular aspartic protease genes from Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384. Appl Environ Microbiol 78:6838–6849. doi:10.​1128/​AEM.​00505-12 PubMedCentral CrossRef PubMed
    Schnierda T, Bauer FF, Divol B, van Rensburg E, Görgens JF (2014) Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts. Lett Appl Microbiol 58:478–485. doi:10.​1111/​lam.​12217 CrossRef PubMed
    Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41CrossRef PubMed
    Taylor R (1990) Interpretation of the correlation coefficient: a basic review. J Diagn Med Sonog 1:35–39CrossRef
    Thomas KC, Ingledew WM (1990) Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl Environ Microbiol 56:2046–2050PubMedCentral PubMed
    Thomas KC, Ingledew WM (1992) Production of 21 % (v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes. J Ind Microbiol 10:61–68. doi:10.​1007/​BF01583635 CrossRef
    Thomas KC, Ingledew WM (1994) Lysine inhibition of Saccharomyces cerevisiae: role of repressible L-lysine ε-aminotransferase. World J Microbiol Biotechnol 10:572–575. doi:10.​1007/​BF00367670 CrossRef PubMed
    Varela C, Pizarro F, Agosin E (2004) Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl Environ Microbiol 70:3392–3400. doi:10.​1128/​AEM.​70.​6.​3392-3400.​2004 PubMedCentral CrossRef PubMed
    Viana T, Loureiro-Dias MC, Loureiro V, Prista C (2012) Peculiar H+ homeostasis of Saccharomyces cerevisiae during the late stages of wine fermentation. Appl Environ Microbiol 78:6302–6308. doi:10.​1128/​AEM.​01355-12 PubMedCentral CrossRef PubMed
    Viana T, Loureiro-Dias M, Prista C (2014) Efficient fermentation of an improved synthetic grape must by enological and laboratory strains of Saccharomyces cerevisiae. AMB Express 4:16–19. doi:10.​1186/​s13568-014-0016-0 PubMedCentral CrossRef PubMed
    Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A, Moeller S (2012) gplots: various R programming tools for plotting data. R package version 2. http://​CRAN.​R-project.​org/​package=​gplots
    White S, McIntyre M, Berry DR, McNeil B (2002) The autolysis of industrial filamentous fungi. Crit Rev Biotechnol 22:1–14CrossRef PubMed
  • 作者单位:Varongsiri Kemsawasd (1)
    Tiago Viana (1)
    Ylva Ardö (2)
    Nils Arneborg (1)

    1. Food Microbiology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark
    2. Dairy, Meat and Plant Product Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg C, 1958, Denmark
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
In this study, the influence of twenty different single (i.e. 19 amino acids and ammonium sulphate) and two multiple nitrogen sources (N-sources) on growth and fermentation (i.e. glucose consumption and ethanol production) performance of Saccharomyces cerevisiae and of four wine-related non-Saccharomyces yeast species (Lachancea thermotolerans, Metschnikowia pulcherrima, Hanseniaspora uvarum and Torulaspora delbrueckii) was investigated during alcoholic fermentation. Briefly, the N-sources with beneficial effects on all performance parameters (or for the majority of them) for each yeast species were alanine, arginine, asparagine, aspartic acid, glutamine, isoleucine, ammonium sulphate, serine, valine and mixtures of 19 amino acids and of 19 amino acids plus ammonium sulphate (for S. cerevisiae), serine (for L. thermotolerans), alanine (for H. uvarum), alanine and asparagine (for M. pulcherrima), arginine, asparagine, glutamine, isoleucine and mixture of 19 amino acids (for T. delbrueckii). Furthermore, our results showed a clear positive effect of complex mixtures of N-sources on S. cerevisiae and on T. delbrueckii (although to a lesser extent) as to all performance parameters studied, whereas for L. thermotolerans, H. uvarum and M. pulcherrima, single amino acids affected growth and fermentation performance to the same extent as the mixtures. Moreover, we found groups of N-sources with similar effects on the growth and/or fermentation performance of two or more yeast species. Finally, the influences of N-sources observed for T. delbrueckii and H. uvarum resembled those of S. cerevisiae the most and the least, respectively. Overall, this work contributes to an improved understanding of how different N-sources affect growth, glucose consumption and ethanol production of wine-related yeast species under oxygen-limited conditions, which, in turn, may be used to, e.g. optimize growth and fermentation performance of the given yeast upon N-source supplementation during wine fermentations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700