用户名: 密码: 验证码:
Electrochemical characterization of self-assembled monolayers on gold substrates derived from thermal decomposition of monolayer-protected cluster films
详细信息    查看全文
  • 作者:Michael C. Leopold ; Tran T. Doan…
  • 关键词:Self ; assembled monolayer ; Monolayer ; protected clusters ; Nanoparticle films ; Double ; layer capacitance ; Linear sweep desorption ; Redox probe voltammetry ; Thin gold films
  • 刊名:Journal of Applied Electrochemistry
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:45
  • 期:10
  • 页码:1069-1084
  • 全文大小:1,174 KB
  • 参考文献:1.Brown KR, Fox AP, Natan M (1996) Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. J Am Chem Soc 118:1154鈥?157CrossRef
    2.Loftus AF, Reighard K, Kapourales S, Leopold MC (2008) Monolayer-protected nanoparticle film assemblies as platforms for controlling interfacial and adsorption properties in protein monolayer electrochemistry. J Am Chem Soc 130:1649鈥?661CrossRef
    3.Hicks JF, Zamborini FP, Murray RW (2002) Dynamics of electron transfers between electrodes and monolayers of nanoparticles. J Phys Chem B 106:7751鈥?757CrossRef
    4.Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of 鈥渟pectroscopically silent鈥?heavy metal ions. Nano Lett 1:165鈥?67CrossRef
    5.Guihen E, Glennon JD (2003) Nanoparticles in separation science鈥攔ecent developments. Anal Lett 36:3309鈥?336CrossRef
    6.Yang L, Guihen E, Holmes JD, Loughran M, O鈥橲ullivan GP, Glennon JD (2005) Gold nanoparticle-modified etched capillaries for open-tubular capillary electrochromatography. Anal Chem 77:1840鈥?846CrossRef
    7.Gross GM, Nelson DA, Grate JW, Synovec RE (2003) Monolayer-protected gold nanoparticles as a stationary phase for open tubular gas chromatography. Anal Chem 75:4558鈥?564CrossRef
    8.Zellers ET, Cai Q (2002) Dual-chemiresistor GC detector employing layer-protected metal nanocluster interfaces. Anal Chem 74:3533鈥?539CrossRef
    9.Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer protected cluster molecules. Acc Chem Res 33:27鈥?6CrossRef
    10.Feldheim DI, Foss CA (eds) (2002) Metal nanoparticles鈥攕ynthesis, characterization, and applications. Marcel Dekker, New York
    11.Zamborini FP, Leopold MC, Hicks JF, Kulesza PJ, Malik MA, Murray RW (2002) Electron hopping conductivity and vapor sensing properties of flexible network polymer films of metal nanoparticles. J Am Chem Soc 124:8958鈥?964CrossRef
    12.Evans SD, Johnson SR, Cheng YL, Shen T (2000) Vapour sensing using hybrid organic鈥搃norganic nanostructured materials. J Mater Chem 10:183鈥?88CrossRef
    13.Grate JW, Nelson DA, Skaggs R (2003) Sorptive behavior of monolayer-protected gold nanoparticle films: implications for chemical vapor sensing. Anal Chem 75:1868鈥?879CrossRef
    14.Wohltjen H, Snow AW (1998) Colloidal metal-insulator-metal ensemble chemiresistor sensor. Anal Chem 70:2856鈥?859CrossRef
    15.Han L, Daniel DR, Maye MM, Zhong C (2001) Core-shell nanostructured nanoparticle films as chemically sensitive interfaces. Anal Chem 73:4441鈥?449CrossRef
    16.Russell LE, Pompano RR, Kittredge KW, Leopold MC (2007) Assembled nanoparticle films with crown ether-metal ion 鈥渟andwiches鈥?as sensing mechanisms for metal ions. J Mater Sci 42:7100鈥?108CrossRef
    17.Wuelfing WP, Zamborini FP, Templeton AC, Wen X, Yoon H, Murray RW (2001) Monolayer-protected clusters: molecular precursors to metal films. Chem Mater 13:87鈥?5CrossRef
    18.Musick MD, Keating CD, Lyon LA, Botsko SL, Pena DJ, Holliway WD, McEvoy TM, Richardson JN, Natan MJ (2000) Metal films prepared by stepwise assembly. 2. Construction and characterization of colloidal Au and Ag multilayers. Chem Mater 12:2869鈥?881CrossRef
    19.Supriya L, Claus RO (2005) Colloidal Au/linker molecule multilayer films: low-temperature thermal coalescence and resistance changes. Chem Mater 17:4325鈥?334CrossRef
    20.Yang N, Aoki K, Nagasawa H (2004) Thermal metallization of silver stearate-coated nanoparticles owing to the destruction of the shell structure. J Phys Chem B 108:15027鈥?5032CrossRef
    21.Jiang P, Cizeron J, Bertone JF, Colvin VL (1999) Preparation of macroporous metal films from colloidal crystals. J Am Chem Soc 121:7957鈥?958CrossRef
    22.Luo L, Maye MM, Han L, Kariuki NN, Jones VW, Lin Y, Engelhard MH, Zhong C (2004) Spectroscopic characterizations of molecularly linked gold nanoparticle assemblies upon thermal treatment. Langmuir 20:4254鈥?260CrossRef
    23.Taniguchi I, Toyosawa K, Yamaguchi H, Yasukouchi K (1982) Reversible electrochemical reduction and oxidation of cytochrome-c at a bis(4-pyridyl) disulfide-modified gold electrode. J Chem Soc Chem Comm 18:1032鈥?033CrossRef
    24.Norman AG, Olson JM, Geisz JF, Moutinho HR, Mason A, Al-Jassim MM, Vernon SM (1999) Ge-related faceting and segregation during the growth of metastable (GaAs)(1聽鈭捖?em class="EmphasisTypeItalic">x)(Ge-2)(x) alloy layers by metal-organic vapor-phase epitaxy. Appl Phys Lett 74:1382鈥?384CrossRef
    25.Fan FF, Yang J, Dirk SM, Price DW, Kosynkin D, Tour JM, Bard AJ (2001) Determination of the molecular electrical properties of self-assembled monolayers of compounds of interest in molecular electronics. J Am Chem Soc 123:2454鈥?455CrossRef
    26.Zamborini FP, Crooks RM (1998) Corrosion passivation of gold by n-alkanethiol self-assembled monolayers: effect of chain length and end group. Langmuir 14:3279鈥?286CrossRef
    27.Gooding JJ, Mearns F, Yang W, Liu J (2003) Self-assembled monolayers into the 21(st) century: recent advances and applications. Electroanalysis 15:81鈥?6CrossRef
    28.Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533鈥?554CrossRef
    29.Meyers RA (ed) (2010) Encyclopedia of analytical chemistry. Wiley, New York, pp 1鈥?6
    30.Creager SE, Hockett LA, Rowe GK (1992) Consequences of microscopic surface-roughness for molecular self-assembly. Langmuir 8:854鈥?61CrossRef
    31.Guo L, Facci JS, McLendon G, Mosher R (1994) Effect of gold topography and surface pretreatment on the self-assembly of alkanethiol monolayers. Langmuir 10:4588鈥?593CrossRef
    32.Leopold MC, Black JA, Bowden EF (2002) Influence of gold topography on carboxylic acid terminated self-assembled monolayers. Langmuir 18:978鈥?80CrossRef
    33.Finklea HO (1996) Electrochemistry of organized monolayers of thiols and related molecules on electrodes. Electroanal Chem 19:109鈥?35
    34.Nahir TM, Bowden EF (1996) The distribution of standard rate constants for electron transfer between thiol-modified gold electrodes and adsorbed cytochrome c. J Electroanal Chem 410:9鈥?3CrossRef
    35.Zamborini FP, Hicks JF, Murray RW (2000) Quantized double layer charging of nanoparticle films assembled using carboxylate/(Cu2+ or Zn2+)/carboxylate bridges. J Am Chem Soc 122:4514鈥?515CrossRef
    36.Sheibley D, Tognarelli DJ, Szymanik R, Leopold MC (2005) Ultra-fast formation and characterization of stable nanoparticle film assemblies. J Mater Chem 15:491鈥?98CrossRef
    37.Tognarelli DJ, Miller RB, Pompano RR, Loftus AF, Sheibley DJ, Leopold MC (2005) Covalently networked monolayer-protected nanoparticle films. Langmuir 21:11119鈥?1127CrossRef
    38.Goss CA, Charych DH, Majda M (1991) Application of (3-mercaptopropyl) trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates. Anal Chem 63:85鈥?8CrossRef
    39.Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalized gold nanoparticles. J Chem Soc Chem Comm 16:1655鈥?656CrossRef
    40.Hicks JF, Miles DT, Murray RW (2002) Quantized double-layer charging of highly monodisperse metal nanoparticles. J Am Chem Soc 124:13322鈥?3328CrossRef
    41.Ingram RS, Hostetler MJ, Murray RW (1997) Poly-hetero-omega-functionalized alkanethiolate-stabilized gold cluster compounds. J Am Chem Soc 119:9175鈥?178CrossRef
    42.Templeton AC, Hostetler MJ, Warmoth EK, Chen S, Hartshorn CM, Krishnamurthy VM, Forbes MDE, Murray RW (1998) Gateway reactions to diverse, polyfunctional monolayer-protected gold clusters. J Am Chem Soc 120:4845鈥?849CrossRef
    43.Baker LA, Zamborini FP, Sun L, Crooks RM (1999) Dendrimer-mediated adhesion between vapor-deposited Au and glass or Si wafers. Anal Chem 71:4403鈥?406CrossRef
    44.Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon Press, New York
    45.Bard AJ, Faulkner LR (1980) Electrochemical methods fundamentals and applications. Wiley, New York
    46.Miller C, Cuendet P, Graetzel M (1991) Adsorbed omega-hydroxy thiol monolayers on gold electrodes 鈥?evidence for electron-tunneling to redox species in solution. J Phys Chem 95:877鈥?86CrossRef
    47.Kielland J (1937) Individual activity coefficients of ions in aqueous solutions. J Am Chem Soc 59:1675鈥?678CrossRef
    48.Weisshaar DE, Walczak MM, Porter MD (1993) Electrochemically induced transformations of monolayers formed by self-assembly of mercaptoethanol at gold. Langmuir 9:323鈥?29CrossRef
    49.Walczak MM, Popenoe DD, Deinhammer RS, Lamp BD, Chung C, Porter MD (1991) Reductive desorption of alkanethiolate monolayers at gold鈥攁 measure of surface coverage. Langmuir 7:2687鈥?693CrossRef
    50.Finklea HO, Avery S, Lynch M, Furtsch T (1987) Langmuir 3. Blocking oriented monolayers of alkyl mercaptans on gold electrodes. 3:409鈥?13
    51.Finklea HO, Snider DA, Fedyk J, Sabatani E, Gafni Y, Rubinstein I (1993) Characterization of octadecanethiol-coated gold electrodes as microarray electrodes by cyclic voltammetry and ac-impendance spectroscopy. Langmuir 9:3660鈥?667CrossRef
    52.Chidsey CED, Bertozzi CR, Putvinski TM, Mujsce AM (1990) Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold鈥攅lectroactive self-assembled monolayers. J Am Chem Soc 112:4301鈥?306CrossRef
    53.Groat KA, Creager SE (1993) Self-assembled monolayers in organic-solvents鈥攅lectrochemistry at alkanethiolate-coated gold in propylene carbonate. Langmuir 9:3668鈥?675CrossRef
    54.Jennings GW, Laibinis PE (1997) Self-assembled n-alkanethiolate monolayers on underpotentially deposited adlayers of silver and copper on gold. J Am Chem Soc 119:5208鈥?214CrossRef
    55.Leibowitz FL, Zheng W, Maye MM, Zhong C (1999) Structures and properties of nanoparticle thin films formed via a one-step鈥攅xchange-cross-linking鈥攑recipitation route. Anal Chem 71:5076鈥?083CrossRef
    56.Prime KL, Whitesides GM (1991) Self-assembled organic monolayers鈥攎odel systems for studying adsorption of proteins at surfaces. Science 252:1164鈥?167CrossRef
    57.Bowden EF (1997) Wiring mother nature: interfacial electrochemistry of proteins. Electrochem Soc Interface 6:40鈥?4
    58.Wallace JM, Dening BM, Eden KB, Stroud RM, Long JW, Rolison DR (2004) Silver-colloid-nucleated cytochrome c superstructures encapsulated in silica nanoarchitectures. Langmuir 20:9276鈥?281CrossRef
    59.Wallace JM, Rice JK, Pietron JJ, Stroud RM, Long JW, Rolison DR (2003) Silica nanoarchitectures incorporating self-organized protein superstructures with gas-phase bioactivity. Nano Lett 3:1463鈥?467CrossRef
  • 作者单位:Michael C. Leopold (1)
    Tran T. Doan (1)
    Melissa J. Mullaney (1)
    Andrew F. Loftus (1)
    Christopher M. Kidd (1)

    1. Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA, 23173, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Physical Chemistry
    Industrial Chemistry and Chemical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1572-8838
文摘
Networked films of monolayer-protected clusters (MPCs), alkanethiolate-stabilized gold nanoparticles, can be thermally decomposed to form stable gold on glass substrates that are subsequently modified with self-assembled monolayers (SAMs) for use as modified electrodes. Electrochemical assessment of these SAM-modified gold substrates, including double-layer capacitance measurements, linear sweep desorption of the alkanethiolates, and diffusional redox probing, all show that SAMs formed on gold supports formed from thermolysis of MPC films possess substantially higher defect density compared to SAMs formed on traditional evaporated gold. The density of defects in the SAMs on thermolyzed gold is directly related to the strategies used to assemble the MPC film prior to thermolysis. Specifically, gold substrates formed from thermally decomposing MPC films formed with electrostatic bridges between carboxylic acid-modified MPCs and metal ion linkers are particularly sensitive to the degree of metal exposure during the assembly process. While specific metal dependence was observed, metal concentration within the MPC precursor film was determined to be a more significant factor. Specific MPC film linking strategies and pretreatment methods that emphasized lower metal exposure resulted in gold films that supported SAMs of lower defect density. The defect density of a SAM-modified electrode is shown to be critical in certain electrochemical experiments such as protein monolayer electrochemistry of adsorbed cytochrome c. While the thermal decomposition of nanoparticle film assemblies remains a viable and interesting technique for coating both flat and irregular shaped substrates, this study provides electrochemical assessment tools and tactics for determining and controlling SAM defect density on this type of gold structure, a property critical to their effective use in subsequent electrochemical applications. Keywords Self-assembled monolayer Monolayer-protected clusters Nanoparticle films Double-layer capacitance Linear sweep desorption Redox probe voltammetry Thin gold films

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700