Humidity-sensing properties of hierarchical ZnO/MWCNTs/ZnO nanocomposite film sensor based on electrostatic layer-by-layer self-assembly
详细信息    查看全文
  • 作者:Dongzhi Zhang ; Nailiang Yin ; Bokai Xia…
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:27
  • 期:3
  • 页码:2481-2487
  • 全文大小:2,088 KB
  • 参考文献:1.X.T. Qiu, R. Tang, J. Zhu, J. Oiler, C.J. Yu, Z.Y. Wang, H.U. Yu, The effects of temperature, relative humidity and reducing gases on the ultraviolet response of ZnO based film bulk acoustic-wave resonator. Sens. Actuators, B 151, 360–364 (2011)CrossRef
    2.C.M. Lin, Y.Y. Chen, V. Felmetsger, T. Riekkinen, D. Senesky, A. Pisaon, Surface acoustic wave devices on AlN/3C-SiC/Si multilayer structures. J. Micromech. Microeng. 23, 025019 (2013)CrossRef
    3.A. Buvailo, Y.J. Xing, J. Hines, E. Borguet, Thin polymer film based rapid surface acoustic wave humidity sensors. Sens. Actuators, B 156, 444–449 (2011)CrossRef
    4.Y. Zhu, J.C. Chen, H.M. Li, Y.H. Zhu, J.Q. Xu, Synthesis of mesoporous SnO2–SiO2 composites and their application as quartz crystal microbalance humidity sensor. Sens. Actuators, B 193, 320–325 (2014)CrossRef
    5.Y. Yao, X.D. Chen, X.Y. Li, X.P. Chen, N. Li, Investigation of the stability of QCM humidity sensor using graphene oxide as sensing films. Sens. Actuators, B 191, 779–783 (2014)CrossRef
    6.J. Xie, H. Wang, Y.H. Lin, Y. Zhou, Y.P. Wu, Highly sensitive humidity sensor based on quartz crystal microbalance coated with ZnO colloid spheres. Sens. Actuators, B 177, 1083–1088 (2013)CrossRef
    7.Y. Yao, Y.J. Xue, Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film. Sens. Actuators, B 211, 52–58 (2015)CrossRef
    8.Y. Yao, X.D. Chen, W.M. Ma, W.W. Ling, Quartz crystal microbalance humidity sensors based on nanodiamond sensing films. IEEE Trans. Nanotechnol. 13, 386–393 (2014)CrossRef
    9.F.X. Liang, L.B. Luo, L.X. Zheng, H. Cheng, Y.Y. Li, TiO2 nanotube-based field effect transistors and their application as humidity sensors. Mater. Res. Bull. 47, 54–58 (2012)CrossRef
    10.M. Zhuo, Y.J. Chen, J. Sun, H.M. Zhang, Humidity sensing properties of a single Sb doped SnO2 nanowire field effect transistor. Sens. Actuators, B 186, 78–83 (2013)CrossRef
    11.D. Jung, J. Kim, G.S. Lee, Enhanced humidity-sensing response of metal oxide coated carbon nanotube. Sens. Actuators, A 223, 11–17 (2015)CrossRef
    12.S. Jung, T. Ji, ZnO nanorod-based humidity sensors with fast response. IEEE Electron. Device Lett. 35, 960–962 (2014)CrossRef
    13.J.-L. Hou, C.-H. Wu, T.-J. Hsueh, Self-biased ZnO nanowire humidity sensor vertically integrated on triple junction solar cell. Sens. Actuators, B 197, 137–141 (2014)CrossRef
    14.J. Herrán, I. Fernández, E. Ochoteco, G. Cabañero, H. Grande, The role of water vapour in ZnO nanostructures for humidity sensing at room temperature. Sens. Actuators, B 198, 239–242 (2014)CrossRef
    15.Q.Q. Jia, H.M. Ji, Y. Zhang, Y.L. Chen, X.H. Sun, Z.G. Jin, Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application. J. Hazard. Mater. 276, 262–270 (2014)CrossRef
    16.S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators, B 202, 272–278 (2014)CrossRef
    17.K.H. Kim, Z.G. Jin, Y. Abe, M. Kawamura, A comparative study on the structural properties of ZnO and Ni-doped ZnO nanostructures. Mater. Lett. 149, 8–11 (2015)CrossRef
    18.C.S. Chen, X.D. Xie, G.J. Zhao, B. Zeng, X.T. Ning, S.Y. Cao, Y. Xiao, Y.P. Mei, X.M. Huang, Graphene/multi-walled carbon nanotube composite as an effective supports to enhance the photocatalytic property of Cu-doped ZnO nanopaticles. Funct. Mater. Lett. 6, 1350062 (2013)CrossRef
    19.D. Zhang, N. Yin, B. Xia, Facile fabrication of ZnO nanocrystalline-modified graphene hybrid nanocomposite toward methane gas sensing application. J. Mater. Sci.: Mater. Electron. 26, 5937–5945 (2015)
    20.S. Biswas, G.P. Kar, D. Arora, S. Bose, A unique strategy towards high dielectric constant and low loss with multiwall carbon nanotubes anchored onto graphene oxide sheets. RSC Adv. 5, 24132–24138 (2015)CrossRef
    21.H.D. Liu, Carbon nanotubes anchored with SnO2 nanosheets as anode for enhanced Li-ion storage. J. Mater. Sci.: Mater. Electron. 25, 3353–3357 (2014)
    22.Y. Li, T.T. Wu, M.J. Yang, Humidity sensors based on the composite of multi-walled carbon nanotubes and crosslinked polyelectrolyte with good sensitivity and capability of detecting low humidity. Sens. Actuators, B 203, 63–70 (2014)CrossRef
    23.X. Yun, J. Wang, L. Shen, H. Dou, X. Zhang, Three-dimensional graphene nanosheets/carbon nanotube paper as flexible electrodes for electrochemical capacitors. RSC Adv. 5, 22173–22177 (2015)CrossRef
    24.J.G. Tait, M.F.L. De Volder, D. Cheyns, P. Heremans, B.P. Rand, Absorptive carbon nanotube electrodes: consequences of optical interference loss in thin film solar cells. Nanoscale 7, 7259–7266 (2015)CrossRef
    25.S. Fu, G. Yang, Y. Zhou, H. Pan, C.M. Wai, D. Du, Y. Lin, Ultrasonic enhanced synthesis of multi-walled carbon nanotube supported Pt–Co bimetallic nanoparticles as catalysts for the oxygen reduction reaction. RSC Adv. 5, 32685–32689 (2015)CrossRef
    26.T. Das, S. Banerjee, K. Dasgupta, J.B. Joshi, V. Sudarsan, Nature of the Pd–CNT interaction in Pd nanoparticles dispersed on multi-walled carbon nanotubes and its implications in hydrogen storage properties. RSC Adv. 5, 41468–41474 (2015)CrossRef
    27.I. Dube, D. Jiménez, G. Fedorov, A. Boyd, I. Gayduchenko, M. Paranjape, P. Barbara, Understanding the electrical response and sensing mechanism of carbon-nanotube-based gas sensors. Carbon 87, 330–337 (2016)CrossRef
    28.D. Zhang, J. Tong, B. Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators, B 197, 66–72 (2014)CrossRef
    29.C.L. Cao, C.G. Hu, L. Fang, S.X. Wang, Y.S. Tian, C.Y. Pan, Humidity sensor based on multi-walled carbon nanotube thin films. J. Nanomater. 2011, 707303 (2011)
    30.J. Lee, D. Cho, Y. Jeong, A resistive-type sensor based on flexible multi-walled carbon nanotubes and polyacrylic acid composite films. Solid-State Electron. 87, 80–84 (2013)CrossRef
    31.F.S. Tsai, S.J. Wang, Shui-Jinn, Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets. Sens. Actuators, B 193, 280–287 (2014)CrossRef
    32.N.F. Hsu, M. Chang, C.H. Lin, Synthesis of ZnO thin films and their application as humidity sensors. Microsyst. Technol. 19, 1737–1743 (2012)CrossRef
    33.D. Zhang, J. Liu, H. Chang, A. Liu, B. Xia, Characterization of a hybrid composite of SnO2 nanocrystal-decorated reduced graphene oxide for ppm-level ethanol gas sensing application. RSC Adv. 5, 18666–18672 (2015)CrossRef
    34.X.J. Chen, J. Zhang, Z.L. Wang, Q. Yan, S.C. Hui, Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification. Sens. Actuators, B 156, 631–636 (2011)CrossRef
    35.Y. Wang, S. Park, J.T.W. Yeow, A. Langner, F. Müller, A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens. Actuators, B 149, 136–142 (2010)CrossRef
    36.Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, H. Park, Capacitive humidity sensor design based on anodic aluminum oxide. Sens. Actuators, B 141, 441–446 (2009)CrossRef
    37.G.H. Lu, L.E. Ocola, J.H. Chen, Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20, 445502 (2009)CrossRef
    38.G.H. Lu, L.E. Ocola, J.H. Chen, Gas detection using low-temperature reduced graphene oxide sheets. Appl. Phys. Lett. 94, 083111 (2009)CrossRef
    39.F. Barroso-Bujans, S. Cerveny, A. Alegra, J. Colmenero, Sorption and desorption behavior of water and organic solvents from graphite oxide. Carbon 48, 3277–3286 (2010)CrossRef
    40.T. Fei, K. Jiang, F. Jiang, R. Mu, T. Zhang, Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films. J. Appl. Polym. Sci. 131, 3972 (2014)
  • 作者单位:Dongzhi Zhang (1)
    Nailiang Yin (1)
    Bokai Xia (1)
    Yan Sun (1)
    Yifan Liao (2)
    Zilan He (2)
    Shuang Hao (2)

    1. College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, 266580, People’s Republic of China
    2. Electric Power Research Institute, CSG, Guangzhou, 510080, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
  • 出版者:Springer New York
  • ISSN:1573-482X
文摘
This paper demonstrated a resistive-type humidity sensor with hierarchical ZnO/MWCNTs/ZnO nanocomposite film coated. Hydrothermally synthesized ZnO nanorods and functionalized multi-walled carbon nanotubes (MWCNTs) were utilized to construct a humidity sensor by using electrostatic layer-by-layer (ELbL) self-assembly technique. The characterization results including scanning electron microscope and X-ray diffraction confirmed the successful formation of as-prepared nanostructures. The electrical properties of the sensing films were investigated under different deposition time in the ELbL self-assembly process. The humidity sensing behaviors of the ZnO/MWCNTs/ZnO hierarchical hybrid film were investigated in a wide relative humidity (RH) range. It is found that the sensor exhibited an excellent linear response with RH, small hysteresis, acceptable repeatability and swift response-recovery characteristics. The possible sensing mechanism for the presented sensor was attributed to the nanostructure of ZnO/MWCNTs/ZnO and swelling effects between interlayers. This study provided a benchmark for humidity sensor fabrication using ELbL self-assembly technique.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700