Necroptotic cell death in failing heart: relevance and proposed mechanisms
详细信息    查看全文
  • 作者:Adriana Adameova ; Eva Goncalvesova ; Adrian Szobi…
  • 关键词:Heart failure ; Cell death ; Necroptosis ; Apoptosis ; Passive necrosis ; Maladaptive autophagy
  • 刊名:Heart Failure Reviews
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:21
  • 期:2
  • 页码:213-221
  • 全文大小:482 KB
  • 参考文献:1.Olson RE (1959) Myocardial metabolism in congestive heart failure. J Chronic Dis 9:442–464CrossRef PubMed
    2.Dhalla NS, Das PK, Sharma GP (1978) Subcellular basis of cardiac contractile failure. J Mol Cell Cardiol 10:363–385CrossRef PubMed
    3.Packer M (1988) Neurohormonal interactions and adaptations in congestive heart failure. Circulation 77:721–730CrossRef PubMed
    4.Weber KT, Brilla CG (1991) Pathological hypertrophy and the cardiac interstitium: fibrosis and the renin-angiotensin-aldosterone system. Circulation 83:1849–1865CrossRef PubMed
    5.Gaudron P, Eilles C, Kugler I, Ertl G (1993) Progressive left ventricular dysfunction and remodeling after myocardial infarction. Circulation 87:755–763CrossRef PubMed
    6.Struijker-Boudier HAJ, Smits JFM, DeMey JGR (1995) Pharmacology of cardiac and vascular remodeling. Ann Rev Pharmacol Toxicol 35:509–539CrossRef
    7.Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiovascular remodeling. J Am Coll Cardiol 35:569–582CrossRef PubMed
    8.Mudd JO, Kass DA (2008) Tackling heart failure in the twenty-first century. Nature 451:919–928CrossRef PubMed
    9.Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D, Elimban V, Dent MR, Tappia PS (2009) Subcellular remodeling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res 81:429–438CrossRef PubMed
    10.Müller AL, Dhalla NS (2012) Role of various proteases in cardiac remodeling and progression of heart failure. Heart Fail Rev 17:395–409CrossRef PubMed
    11.Dhalla NS, Rangi S, Babick AP, Zieroth S, Elimban V (2012) Cardiac remodeling and subcellular defects in heart failure due to myocardial infarction and aging. Heart Fail Rev 17:671–681CrossRef PubMed
    12.Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, Murabito JM, Vasan RS (2002) Long-term trends in the incidence of and survival with heart failure. N Engl J Med 347:1397–1402CrossRef PubMed
    13.Goldberg RJ, Ciampa J, Lessard D, Meyer TE, Spencer FA (2007) Long-term survival after heart failure: a contemporary population-based perspective. Arch Intern Med 167:490–496CrossRef PubMed
    14.Bleumink GS, Knetsch AM, Sturkenboom MC, Straus SM, Hofman A, Deckers JW, Witteman JC, Stricker BH (2004) Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure. The Rotterdam Study. Eur Heart J 25:1614–1619CrossRef PubMed
    15.Dhalla NS, Temsah RM (2001) Sarcoplasmic reticulum and cardiac oxidative stress: an emerging target for heart disease. Expert Opin Ther Targets 5:205–217CrossRef PubMed
    16.Dhalla NS, Afzal N, Beamish RE, Naimark B, Takeda N, Nagano M (1993) Pathophysiology of cardiac dysfunction in congestive heart failure. Can J Cardiol 9:873–887PubMed
    17.Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18(6):655–673CrossRef PubMed
    18.Hafstad AD, Nabeebaccus AA, Shah AM (2013) Novel aspects of ROS signalling in heart failure. Basic Res Cardiol 108:359CrossRef PubMed
    19.Dhalla NS, Dent MR, Tappia PS, Sethi R, Barta J, Goyal RK (2006) Subcellular remodeling as a viable target for the treatment of congestive heart failure. J Cardiovasc Pharmacol Ther 11:31–45CrossRef PubMed
    20.Olivetti G, Giordano G, Corradi D, Melissari M, Lagrasta C, Gambert SR, Anversa P (1995) Gender differences and aging: effects on the human heart. J Am Coll Cardiol 26:1068–1079CrossRef PubMed
    21.Smith DK, Zhang CL (2015) Regeneration through reprogramming adult cell identity in vivo. Am J Pathol 185:2619–2628CrossRef PubMed
    22.Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P (1998) Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA 95:8801–8805PubMedCentral CrossRef PubMed
    23.Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669CrossRef PubMed
    24.Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459CrossRef PubMed
    25.Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721PubMedCentral CrossRef PubMed
    26.Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119CrossRef PubMed
    27.Miao B, Degterev A (2009) Methods to analyze cellular necroptosis. Methods Mol Biol 559:79–93CrossRef PubMed
    28.Luedde M, Lutz M, Carter N, Sosna J, Jacoby C, Vucur M, Gautheron J, Roderburg C, Borg N, Reisinger F, Hippe HJ, Linkermann A, Wolf MJ, Rose-John S, Lüllmann-Rauch R, Adam D, Flögel U, Heikenwalder M, Luedde T, Frey N (2014) RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res 103:206–216CrossRef PubMed
    29.Oerlemans MI, Liu J, Arslan F, den Ouden K, van Middelaar BJ, Doevendans PA, Sluijter JP (2012) Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol 107:270CrossRef PubMed
    30.Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM (2007) Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther 21:227–233CrossRef PubMed
    31.Berghe TV, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin CJ, Brunk UT, Declercq W, Vandenabeele P (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17:922–930CrossRef
    32.Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147CrossRef
    33.Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15(7):713–720CrossRef PubMed
    34.Takemura G, Miyata S, Kawase Y, Okada H, Maruyama R, Fujiwara H (2006) Autophagic degeneration and death of cardiomyocytes in heart failure. Autophagy 2:212–214CrossRef PubMed
    35.Hariharan N, Zhai P, Sadoshima J (2011) Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal 14:2179–2190PubMedCentral CrossRef PubMed
    36.Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Hill JA, Diwan A (2012) Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 125:3170–3181PubMedCentral CrossRef PubMed
    37.Sciarretta S, Hariharan N, Monden Y, Zablocki D, Sadoshima J (2010) Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol 32:275–281PubMedCentral CrossRef PubMed
    38.Basit F, Cristofanon S, Fulda S (2013) Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ 20:1161–1173PubMedCentral CrossRef PubMed
    39.Guerra S, Leri A, Wang X, Finato N, Di Loreto C, Beltrami CA, Kajstura J, Anversa P (1999) Myocyte death in the failing human heart is gender dependent. Circ Res 85:856–866CrossRef PubMed
    40.Kang PM, Izumo S (2000) Apoptosis and heart failure: a critical review of the literature. Circ Res 86:1107–1113CrossRef PubMed
    41.Mani K (2008) Programmed cell death in cardiac myocytes: strategies to maximize post-ischemic salvage. Heart Fail Rev 13:193–209CrossRef PubMed
    42.Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, Kockx MM (2001) Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 51:304–312CrossRef PubMed
    43.Nagarajan V, Hernandez AV, Tang WH (2012) Prognostic value of cardiac troponin in chronic stable heart failure: a systematic review. Heart 98:1778–1786CrossRef PubMed
    44.Kung G, Konstantinidis K, Kitsis RN (2011) Programmed necrosis, not apoptosis in the heart. Circ Res 108:1017–1036CrossRef PubMed
    45.Krysko DV, Berghe TV, D'Herde K, Vandenabeele P (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44:205–221CrossRef PubMed
    46.Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M, Cain K, MacFarlane M, Hacker G, Leverkus M (2011) cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43:449–463PubMedCentral CrossRef PubMed
    47.Dillon CP, Oberst A, Weinlich R, Janke LJ, Kang TB, Ben-Moshe T, Mak TW, Wallach D, Green DR (2012) Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Rep 1:401–407PubMedCentral CrossRef PubMed
    48.Osborn SL, Diehl G, Han SJ, Xue L, Kurd N, Hsieh K, Cado D, Robey EA, Winoto A (2010) Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis. Proc Natl Acad Sci USA 107:13034–13039PubMedCentral CrossRef PubMed
    49.Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS, Wang X (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54:133–146CrossRef PubMed
    50.Colbert LE, Fisher SB, Hardy CW, Hall WA, Saka B, Shelton JW, Petrova AV, Warren MD, Pantazides BG, Gandhi K, Kowalski J, Kooby DA, El-Rayes BF, Staley CA 3rd, Adsay NV, Curran WJ Jr, Landry JC, Maithel SK, Yu DS (2013) Pronecrotic mixed lineage kinase domain-like protein expression is a prognostic biomarker in patients with early-stage resected pancreatic adenocarcinoma. Cancer 119:3148–3155PubMedCentral CrossRef PubMed
    51.Pierdomenico M, Negroni A, Stronati L, Vitali R, Prete E, Bertin J, Gough PJ, Aloi M, Cucchiara S (2014) Necroptosis is active in children with inflammatory bowel disease and contributes to heighten intestinal inflammation. Am J Gastroenterol 109:279–287CrossRef PubMed
    52.Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M, Kitada T, Glass K, Owen CA, Mahmood A, Washko GR, Hashimoto S, Ryter SW, Choi AM (2014) Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest 124:3987–4003PubMedCentral CrossRef PubMed
    53.Desai J, Vr SK, Mulay SR, Konrad L, Romoli S, Schauer C, Herrmann M, Bilyy R, Müller S, Popper B, Nakazawa D, Weidenbusch M, Thomasova D, Krautwald S, Linkermann A, Anders HJ (2015) Neutrophil extracellular trap formation can involve RIPK1-RIPK3-MLKL signalling. Eur J Immunol. doi:10.​1002/​eji.​201545605 PubMed
    54.Kitur K, Parker D, Nieto P, Ahn DS, Cohen TS, Chung S, Wachtel S, Bueno S, Prince A (2015) Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage. PLoS Pathog 11:e1004820PubMedCentral CrossRef PubMed
    55.Omoto S, Guo H, Talekar GR, Roback L, Kaiser WJ, Mocarski ES (2015) Suppression of RIP3-dependent necroptosis by human cytomegalovirus. J Biol Chem 290:11635–11648CrossRef PubMed
    56.Moquin D, Chan FK (2010) The molecular regulation of programmed necrotic cell injury. Trends Biochem Sci 35:434–441PubMedCentral CrossRef PubMed
    57.Davis CW, Hawkins BJ, Ramasamy S, Irrinki KM, Cameron BA, Islam K, Daswani VP, Doonan PJ, Manevich Y, Madesh M (2010) Nitration of the mitochondrial complex I subunit NDUFB8 elicits RIP1- and RIP3-mediated necrosis. Free Radic Biol Med 15(48):306–317CrossRef
    58.Kim S, Dayani L, Rosenberg PA, Li J (2010) RIP1 kinase mediates arachidonic acid-induced oxidative death of oligodendrocyte precursors. Int J Physiol Pathophysiol Pharmacol 2:137–147PubMedCentral PubMed
    59.Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y, Luo J, Hu X (2007) Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 6:1641–1649CrossRef PubMed
    60.Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190CrossRef PubMed
    61.Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J, Heinrich M, Merkel O, Ehrenschwender M, Adam D, Mentlein R, Kabelitz D, Schütze S (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21:415–428CrossRef PubMed
    62.Li H, Kobayashi M, Blonska M, You Y, Lin X (2006) Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J Biol Chem 281:13636–13643CrossRef PubMed
    63.Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006) Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22:245–257CrossRef PubMed
    64.O'Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT (2007) Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr Biol 17:418–424PubMedCentral CrossRef PubMed
    65.Moquin DM, McQuade T, Chan FK (2013) CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One 8:e76841PubMedCentral CrossRef PubMed
    66.Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–367PubMedCentral CrossRef PubMed
    67.Kataoka T (2005) The caspase-8 modulator c-FLIP. Crit Rev Immunol 25:31–58CrossRef PubMed
    68.Scaffidi C, Schmitz I, Krammer PH, Peter ME (1999) The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem 274:1541–1548CrossRef PubMed
    69.Stennicke HR, Jürgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X, Zhou Q, Ellerby HM, Ellerby LM, Bredesen D, Green DR, Reed JC, Froelich CJ, Salvesen GS (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273:27084–27090CrossRef PubMed
    70.Kavuri SM, Geserick P, Berg D, Dimitrova DP, Feoktistova M, Siegmund D, Gollnick H, Neumann M, Wajant H, Leverkus M (2011) Cellular FLICE- inhibitory protein (cFLIP) isoforms block CD95- and TRAIL death receptor-induced gene induction irrespective of processing of caspase-8 or cFLIP in the death-inducing signaling complex. J Biol Chem 286:16631–16646PubMedCentral CrossRef PubMed
    71.Cho YS, Challa S, Moquin D et al (2009) Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123PubMedCentral CrossRef PubMed
    72.Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, Chan FK, Wu H (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150:339–350PubMedCentral CrossRef PubMed
    73.Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227CrossRef PubMed
    74.Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, Ma J, Chen W, Zhang Y, Zhou X, Yang Z, Wu SQ, Chen L, Han J (2013) Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res 23:994–1006PubMedCentral CrossRef PubMed
    75.Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 109:5322–5327PubMedCentral CrossRef PubMed
    76.Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG, Liu ZG (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16:55–65CrossRef PubMed
    77.Chen X, Li W, Ren J, Huang D, He WT, Song Y, Yang C, Li W, Zheng X, Chen P, Han J (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24:105–121PubMedCentral CrossRef PubMed
    78.Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, Weber K, Sehon CA, Marquis RW, Bertin J, Gough PJ, Savvides S, Martinou JC, Betrand MJ, Vandenabeele P (2014) MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7:971–981CrossRef PubMed
    79.Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321CrossRef PubMed
    80.Takahashi N, Duprez L, Grootjans S, Cauwels A, Nerinckx W, DuHadaway JB, Goossens V, Roelandt R, Van Hauwermeiren F, Libert C, Declercq W, Callewaert N, Prendergast GC, Degterev A, Yuan J, Vandenabeele P (2012) Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis 3:e437PubMedCentral CrossRef PubMed
    81.Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W, Schultz G (1991) Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res 69:1476–1486CrossRef PubMed
    82.Szobi A, Rajtik T, Carnicka S, Ravingerova T, Adameova A (2014) Mitigation of postischemic cardiac contractile dysfunction by CaMKII inhibition: effects on programmed necrotic and apoptotic cell death. Mol Cell Biochem 388:269–276CrossRef PubMed
    83.Dmitriev YV, Minasian SM, Demchenko EA, Galagudza MM (2013) Study of cardioprotective effects of necroptosis inhibitors on isolated rat heart subjected to global ischemia-reperfusion. Bull Exp Biol Med 155:245–248CrossRef PubMed
    84.Koshinuma S, Miyamae M, Kaneda K, Kotani J, Figueredo VM (2014) Combination of necroptosis and apoptosis inhibition enhances cardioprotection against myocardial ischemia-reperfusion injury. J Anesth 28:235–241CrossRef PubMed
    85.Koudstaal S, Oerlemans MI, Van der Spoel TI, Janssen AW, Hoefer IE, Doevendans PA, Sluijter JP, Chamuleau SA (2015) Necrostatin-1 alleviates reperfusion injury following acute myocardial infarction in pigs. Eur J Clin Invest 45:150–159CrossRef PubMed
    86.Lim SY, Davidson SM, Mocanu MM, Yellon DM, Smith CC (2007) The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther 21:467–469PubMedCentral CrossRef PubMed
    87.Meng L, Jin W, Wang X (2015) RIP3-mediated necrotic cell death accelerates systematic inflammation and mortality. Proc Natl Acad Sci USA 112:11007–11012PubMedCentral CrossRef PubMed
    88.Kleinbongard P, Schulz R, Heusch G (2011) TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 16:49–69CrossRef PubMed
    89.Sun M, Dawood F, Wen WH, Chen M, Dixon I, Kirshenbaum LA, Liu PP (2004) Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction. Circulation 110:3221–3228CrossRef PubMed
    90.Lin Y, Choksi S, Shen HM, Yang QF, Hur GM, Kim YS, Tran JH, Nedospasov SA, Liu ZG (2004) Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 279:10822–10828CrossRef PubMed
    91.He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111CrossRef PubMed
    92.Chen Y, Pat B, Zheng J, Cain L, Powell P, Shi K, Sabri A, Husain A, Dell'italia LJ (2010) Tumor necrosis factor-α produced in cardiomyocytes mediates a predominant myocardial inflammatory response to stretch in early volume overload. J Mol Cell Cardiol 49:70–78PubMedCentral CrossRef PubMed
    93.Chen Y, Pat B, Gladden JD, Zheng J, Powell P, Wei CC, Cui X, Husain A, Dell'italia LJ (2011) Dynamic molecular and histopathological changes in the extracellular matrix and inflammation in the transition to heart failure in isolated volume overload. Am J Physiol Heart Circ Physiol 300:H2251–H2260PubMedCentral CrossRef PubMed
    94.Hayashi Y, Hanawa H, Jiao S, Hasegawa G, Ohno Y, Yoshida K, Suzuki T, Kashimura T, Obata H, Tanaka K, Watanabe T, Minamino T (2015) Elevated endomyocardial biopsy macrophage-related markers in intractable myocardial diseases. Inflammation 38:2288–2299CrossRef PubMed
    95.Sakaguchi H, Yamamoto T, Ono S, Akashi A, Tsuda E, Watanabe K (2012) An infant case of dilated cardiomyopathy associated with congenital cytomegalovirus infection. Pediatr Cardiol 33:824–826CrossRef PubMed
    96.Partanen J, Nieminen MS, Krogerus L, Lautenschlager I, Geagea A, Aarnio P, Mattila S (1991) Cytomegalovirus myocarditis in transplanted heart verified by endomyocardial biopsy. Clin Cardiol 14:847–849CrossRef PubMed
    97.Upton JW, Kaiser WJ, Mocarski ES (2010) Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7:302–313PubMedCentral CrossRef PubMed
    98.Zhang DW, Zheng M, Zhao J, Li YY, Huang Z, Li Z, Han J (2011) Multiple death pathways in TNF-treated fibroblasts: RIP3- and RIP1-dependent and independent routes. Cell Res 21:368–371PubMedCentral CrossRef PubMed
    99.Haunstetter A, Izumo S (2000) Toward antiapoptosis as a new treatment modality. Circ Res 86:371–376CrossRef PubMed
  • 作者单位:Adriana Adameova (1)
    Eva Goncalvesova (2)
    Adrian Szobi (1)
    Naranjan S. Dhalla (3) (4)

    1. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovak Republic
    2. Department of Heart Failure and Transplantation, The National Institute of Cardiovascular Diseases, Bratislava, Slovak Republic
    3. Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
    4. Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1573-7322
文摘
As cardiomyocytes have a limited capability for proliferation, renewal, and repair, the loss of heart cells followed by replacement with fibrous tissue is considered to result in the development of ventricular dysfunction and progression to heart failure (HF). The loss of cardiac myocytes in HF has been traditionally believed to occur mainly due to programmed apoptosis or unregulated necrosis. While extensive research work is being carried out to define the exact significance and contribution of both these cell death modalities in the development of HF, recent knowledge has indicated the existence and importance of a different form of cell death called necroptosis in the failing heart. This new cell damaging process, resembling some of the morphological features of passive necrosis as well as maladaptive autophagy, is a programmed process and is orchestrated by a complex set of proteins involving receptor-interacting protein kinase 1 and 3 (RIP1, RIP3) and mixed lineage kinase domain-like protein (MLKL). Activation of the RIP1–RIP3–MLKL signaling pathway leads to disruption of cation homeostasis, plasma membrane rupture, and finally cell death. It seems likely that inhibition of any site in this pathway may prove as an effective pharmacological intervention for preventing the necroptotic cell death in the failing heart. This review is intended to describe general aspects of the signaling pathway associated with necroptosis, to describe its relationship with cardiac dysfunction in some models of cardiac injury and discuss its potential relevance in various types of HF with respect to the underlying pathologic mechanisms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700