Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial
详细信息    查看全文
  • 作者:Nicola G. Ghazi ; Emad B. Abboud ; Sawsan R. Nowilaty ; Hisham Alkuraya…
  • 刊名:Human Genetics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:135
  • 期:3
  • 页码:327-343
  • 全文大小:1,792 KB
  • 参考文献:Diabetic Retinopathy Study Research Group (1985) Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Early treatment diabetic retinopathy study research group. Arch Ophthalmol 103:1796–1806CrossRef
    Abu-Safieh L, Alrashed M, Anazi S, Alkuraya H, Khan AO, Al-Owain M, Al-Zahrani J, Al-Abdi L, Hashem M, Al-Tarimi S (2013) Autozygome-guided exome sequencing in retinal dystrophy patients reveals pathogenetic mutations and novel candidate disease genes. Genome Res 23:236–247PubMedCentral CrossRef PubMed
    Aleman TS, Jacobson SG, Chico JD, Scott ML, Cheung AY, Windsor EA, Furushima M, Redmond TM, Bennett J, Palczewski K, Cideciyan AV (2004) Impairment of the transient pupillary light reflex in Rpe65(−/−) mice and humans with Leber congenital amaurosis. Invest Ophthalmol Vis Sci 45:1259–1271CrossRef PubMed
    Ashtari M, Cyckowski LL, Monroe JF, Marshall KA, Chung DC, Auricchio A, Simonelli F, Leroy BP, Maguire AM, Shindler KS (2011) The human visual cortex responds to gene therapy-mediated recovery of retinal function. J Clin Investig 121:2160PubMedCentral CrossRef PubMed
    Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239CrossRef PubMed
    Bainbridge JW, Mehat MS, Sundaram V, Robbie SJ, Barker SE, Ripamonti C, Georgiadis A, Mowat FM, Beattie SG, Gardner PJ (2015) Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med 372:1887–1897PubMedCentral CrossRef PubMed
    Berger W, Kloeckener-Gruissem B, Neidhardt J (2010) The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 29:335–375CrossRef PubMed
    Berson EL, Rosner B, Sandberg MA, Hayes K, Nicholson BW, Weigel-DiFranco C, Willett W (1993) A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol 111:761–772CrossRef PubMed
    Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Brockhurst RJ, Hayes K, Johnson EJ, Anderson EJ, Johnson CA, Gaudio AR (2010) Clinical trial of lutein in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol 128:403PubMedCentral CrossRef PubMed
    Birch DG, Weleber RG, Duncan JL, Jaffe GJ, Tao W (2013) Randomized trial of ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for retinitis pigmentosa. Am J Ophthalmol 156(283–292):e1PubMed
    Chylack LT Jr, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, McCarthy D, Wu SY (1993) The lens opacities classification system III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol 111:831–836CrossRef PubMed
    Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, Boye SL, Windsor EA, Conlon TJ, Sumaroka A, Roman AJ (2009) Vision 1 year after gene therapy for Leber’s congenital amaurosis. N Engl J Med 361:725–727PubMedCentral CrossRef PubMed
    Cideciyan AV, Jacobson SG, Beltran WA, Sumaroka A, Swider M, Iwabe S, Roman AJ, Olivares MB, Schwartz SB, Komáromy AM (2013) Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci 110:E517–E525PubMedCentral CrossRef PubMed
    Conlon TJ, Deng W-T, Erger K, Cossette T, J-j Pang, Ryals R, Clément N, Cleaver B, McDoom I, Boye SE (2013) Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa. Hum Gene Ther Clin Dev 24:23–28PubMedCentral CrossRef PubMed
    D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, Vollrath D (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651CrossRef PubMed
    Daiger S, Sullivan L, Bowne S (2013) Genes and mutations causing retinitis pigmentosa. Clin Genet 84:132–141CrossRef PubMed
    Dikopf MS, Chow CC, Mieler WF, Tu EY (2013) Cataract extraction outcomes and the prevalence of zonular insufficiency in retinitis pigmentosa. Am J Ophthalmol 156(82–88):e2PubMed
    Dorn JD, Ahuja AK, Caspi A, da Cruz L, Dagnelie G, Sahel J-A, Greenberg RJ, McMahon MJ, Group AIS (2013) The detection of motion by blind subjects with the epiretinal 60-electrode (Argus II) retinal prosthesis. JAMA Ophthalmol 131:183–189PubMedCentral CrossRef PubMed
    Feng W, Yasumura D, Matthes MT, LaVail MM, Vollrath D (2002) Mertk triggers uptake of photoreceptor outer segments during phagocytosis by cultured retinal pigment epithelial cells. J Biol Chem 277:17016–17022CrossRef PubMed
    Fishman G, Anderson R, Lourenco P (1985) Prevalence of posterior subcapsular lens opacities in patients with retinitis pigmentosa. Br J Ophthalmol 69:263–266PubMedCentral CrossRef PubMed
    Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J (2013) Gene therapy clinical trials worldwide to 2012—an update. J Gene Med 15:65–77CrossRef PubMed
    Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809CrossRef PubMed
    Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, Conlon TJ, Boye SL, Flotte TR, Byrne BJ (2008) Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19:979–990PubMedCentral CrossRef PubMed
    Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, Peden MC, Aleman TS, Boye SL, Sumaroka A (2012) Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 130:9–24PubMedCentral CrossRef PubMed
    Klein M, Birch D (2009) Psychophysical assessment of low visual function in patients with retinal degenerative diseases (RDDs) with the Diagnosys full-field stimulus threshold (D-FST). Doc Ophthalmol 119:217–224CrossRef PubMed
    LaVail MM, Yasumura D, Matthes MT, Yang H, Hauswirth WW, Deng WT, Vollrath D (2016) Gene therapy for MERTK-associated retinal degenerations. Adv Exp Med Biol 854:487–493. doi:10.​1007/​978-3-319-17121-0_​65 CrossRef PubMed
    MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, Clark KR, During MJ, Cremers FP, Black GC (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383:1129–1137PubMedCentral CrossRef PubMed
    Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248PubMedCentral CrossRef PubMed
    Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, Mingozzi F, Bennicelli JL, G-s Ying, Rossi S (2009) Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374:1597–1605PubMedCentral CrossRef PubMed
    Miller JW (2008) Preliminary results of gene therapy for retinal degeneration. N Engl J Med 358:2282CrossRef PubMed
    Patel N, Aldahmesh MA, Alkuraya H, Anazi S, Alsharif H, Khan AO, Sunker A, Al-mohsen S, Abboud EB, Nowilaty SR (2015) Expanding the clinical, allelic, and locus heterogeneity of retinal dystrophies. Genet Med
    Petrs-Silva H, Linden R (2014) Advances in gene therapy technologies to treat retinitis pigmentosa. Clin Ophthalmol (Auckland, NZ) 8:127
    Roman AJ, Schwartz SB, Aleman TS, Cideciyan AV, Chico JD, Windsor EA, Gardner LM, Ying GS, Smilko EE, Maguire MG, Jacobson SG (2005) Quantifying rod photoreceptor-mediated vision in retinal degenerations: dark-adapted thresholds as outcome measures. Exp Eye Res 80:259–272CrossRef PubMed
    Roman AJ, Cideciyan AV, Aleman TS, Jacobson SG (2007) Full-field stimulus testing (FST) to quantify visual perception in severely blind candidates for treatment trials. Physiol Meas 28:N51CrossRef PubMed
    Smith A, Bainbridge J, Ali R (2012) Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Ther 19:154–161CrossRef PubMed
    Testa F, Maguire AM, Rossi S, Pierce EA, Melillo P, Marshall K, Banfi S, Surace EM, Sun J, Acerra C (2013) Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology 120:1283–1291PubMedCentral CrossRef PubMed
    Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358CrossRef PubMed
    Vollrath D, Feng W, Duncan JL, Yasumura D, D’Cruz PM, Chappelow A, Matthes MT, Kay MA, LaVail MM (2001) Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci 98:12584–12589PubMedCentral CrossRef PubMed
    Wirth T, Parker N, Ylä-Herttuala S (2013) History of gene therapy. Gene 525:162–169CrossRef PubMed
    Wright AF, Chakarova CF, El-Aziz MMA, Bhattacharya SS (2010) Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 11:273–284CrossRef PubMed
  • 作者单位:Nicola G. Ghazi (1) (8)
    Emad B. Abboud (1)
    Sawsan R. Nowilaty (1)
    Hisham Alkuraya (13)
    Abdulrahman Alhommadi (1)
    Huimin Cai (10) (11) (4)
    Rui Hou (10) (11)
    Wen-Tao Deng (5)
    Sanford L. Boye (5)
    Abdulrahman Almaghamsi (16)
    Fahad Al Saikhan (16)
    Hassan Al-Dhibi (1)
    David Birch (14)
    Christopher Chung (4)
    Dilek Colak (15)
    Matthew M. LaVail (3)
    Douglas Vollrath (2)
    Kirsten Erger (6)
    Wenqiu Wang (10) (11)
    Thomas Conlon (6)
    Kang Zhang (12) (4)
    William Hauswirth (5)
    Fowzan S. Alkuraya (7) (9)

    1. Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
    8. Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
    13. Department of Ophthalmology, College of Medicine, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
    10. Chengdu JiaChuan Biomedicine Co., Ltd, Chengdu, China
    11. Guangzhou KangRui Biological Pharmaceutical Technology Company Ltd., Guangzhou, China
    4. Department of Ophthalmology, Institute for Genomic Medicine, University of California San Diego, San Diego, CA, USA
    5. Department of Ophthalmology, University of Florida, Gainesville, USA
    16. Department of Medicine, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
    14. Rose-Silverthorne Retinal Degenerations Laboratory, Retina Foundation of the Southwest, Dallas, USA
    15. Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
    3. Beckman Vision Center, University of California San Francisco, San Francisco, CA, USA
    2. Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
    6. Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, USA
    12. Veterans Administration Healthcare System, San Diego, CA, 92093, USA
    7. Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
    9. Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Human Genetics
    Molecular Medicine
    Internal Medicine
    Metabolic Diseases
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1203
文摘
MERTK is an essential component of the signaling network that controls phagocytosis in retinal pigment epithelium (RPE), the loss of which results in photoreceptor degeneration. Previous proof-of-concept studies have demonstrated the efficacy of gene therapy using human MERTK (hMERTK) packaged into adeno-associated virus (AAV2) in treating RCS rats and mice with MERTK deficiency. The purpose of this study was to assess the safety of gene transfer via subretinal administration of rAAV2-VMD2-hMERTK in subjects with MERTK-associated retinitis pigmentosa (RP). After a preclinical phase confirming the safety of the study vector in monkeys, six patients (aged 14 to 54, mean 33.3 years) with MERTK-related RP and baseline visual acuity (VA) ranging from 20/50 to <20/6400 were entered in a phase I open-label, dose-escalation trial. One eye of each patient (the worse-seeing eye in five subjects) received a submacular injection of the viral vector, first at a dose of 150 µl (5.96 × 1010vg; 2 patients) and then 450 µl (17.88 × 1010vg; 4 patients). Patients were followed daily for 10 days at 30, 60, 90, 180, 270, 365, 540, and 730 days post-injection. Collected data included (1) full ophthalmologic examination including best-corrected VA, intraocular pressure, color fundus photographs, macular spectral domain optical coherence tomography and full-field stimulus threshold test (FST) in both the study and fellow eyes; (2) systemic safety data including CBC, liver and kidney function tests, coagulation profiles, urine analysis, AAV antibody titers, peripheral blood PCR and ASR measurement; and (3) listing of ophthalmological or systemic adverse effects. All patients completed the 2-year follow-up. Subretinal injection of rAAV2-VMD2-hMERTK was associated with acceptable ocular and systemic safety profiles based on 2-year follow-up. None of the patients developed complications that could be attributed to the gene vector with certainty. Postoperatively, one patient developed filamentary keratitis, and two patients developed progressive cataract. Of these two patients, one also developed transient subfoveal fluid after the injection as well as monocular oscillopsia. Two patients developed a rise in AAV antibodies, but neither patient was positive for rAAV vector genomes via PCR. Three patients also displayed measurable improved visual acuity in the treated eye following surgery, although the improvement was lost by 2 years in two of these patients. Gene therapy for MERTK-related RP using careful subretinal injection of rAAV2-VMD2-hMERTK is not associated with major side effects and may result in clinical improvement in a subset of patients.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700