Preservation of Biomarkers from Cyanobacteria Mixed with Mars­Like Regolith Under Simulated Martian Atmosphere and UV Flux
详细信息    查看全文
  • 作者:Mickael Baqué ; Cyprien Verseux ; Ute Böttger…
  • 关键词:Astrobiology ; Cyanobacteria ; Biosignatures ; Martian regoliths ; EXPOSE ; R2
  • 刊名:Origins of Life and Evolution of Biospheres
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:46
  • 期:2-3
  • 页码:289-310
  • 全文大小:5,239 KB
  • 参考文献:Alvarez AJ, Khanna M, Toranzos GA, Stotzky G (1998) Amplification of DNA bound on clay minerals. Mol Ecol 7:775–778. doi:10.​1046/​j.​1365-294x.​1998.​00339.​x CrossRef
    Ashwal LD (1993) Anorthosites. Springer-Verlag and GmbH & Co. KG, Berlin and HeidelbergCrossRef
    Baqué M, Scalzi G, Rabbow E et al (2013a) Biofilm and planktonic lifestyles differently support the resistance of the desert cyanobacterium Chroococcidiopsis under space and Martian simulations. Orig Life Evol Biosph 43:377–389. doi:10.​1007/​s11084-013-9341-6 CrossRef PubMed
    Baqué M, Viaggiu E, Scalzi G, Billi D (2013b) Endurance of the endolithic desert cyanobacterium Chroococcidiopsis under UVC radiation. Extremophiles 17:161–169. doi:10.​1007/​s00792-012-0505-5 CrossRef PubMed
    Baqué M, Verseux C, Rabbow E et al (2014) Detection of macromolecules in desert cyanobacteria mixed with a Lunar mineral analogue after space simulations. Orig Life Evol Biosph 44:209–221. doi:10.​1007/​s11084-014-9367-4 PubMedCentral CrossRef PubMed
    Barnes D, Battistelli E, Bertrand R et al (2006) The ExoMars rover and Pasteur payload Phase A study: an approach to experimental astrobiology. Int J Astrobiol 5:221–241. doi:10.​1017/​S147355040600309​0 CrossRef
    Bibring J-P, Langevin Y, Mustard JF et al (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312:400–404. doi:10.​1126/​science.​1122659 CrossRef PubMed
    Billi D (2009) Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles 13:49–57CrossRef PubMed
    Billi D, Friedmann EI, Hofer KG et al (2000) Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492PubMedCentral CrossRef PubMed
    Billi D, Baqué M, Smith HD, McKay CP (2013) Cyanobacteria from extreme deserts to space. Adv Microbiol 03:80–86. doi:10.​4236/​aim.​2013.​36A010 CrossRef
    Bosak T, Knoll AH, Petroff AP (2013) The meaning of stromatolites. Annu Rev Earth Planet Sci 41:21–44. doi:10.​1146/​annurev-earth-042711-105327 CrossRef
    Böttger U, de Vera J-P, Fritz J et al (2012) Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planet Space Sci 60:356–362. doi:10.​1016/​j.​pss.​2011.​10.​017 CrossRef
    Bryce CC, Horneck G, Rabbow E et al (2014) Impact shocked rocks as protective habitats on an anoxic early Earth. Int J Astrobiol FirstView 1–8. doi:10.​1017/​S147355041400012​3
    Caro GMM, Mateo-Martí E, Martínez-Frías J (2006) Near-UV transmittance of basalt dust as an analog of the Martian regolith: implications for sensor calibration and astrobiology. Sensors 6:688–696. doi:10.​3390/​s6060688 CrossRef
    Carr CE, Rowedder H, Vafadari C et al (2013) Radiation resistance of biological reagents for in situ Life detection. Astrobiology 13:68–78. doi:10.​1089/​ast.​2012.​0869 CrossRef PubMed
    Cockell CS (2014) Trajectories of Martian habitability. Astrobiology 14:182–203. doi:10.​1089/​ast.​2013.​1106 PubMedCentral CrossRef PubMed
    Cockell CS, Catling DC, Davis WL et al (2000) The Ultraviolet environment of Mars: biological implications past, present, and future. Icarus 146:343–359. doi:10.​1006/​icar.​2000.​6393 CrossRef PubMed
    Cockell CS, Schuerger AC, Billi D et al (2005) Effects of a simulated Martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology 5:127–140. doi:10.​1089/​ast.​2005.​5.​127 CrossRef PubMed
    Cockell CS, Rettberg P, Rabbow E, Olsson-Francis K (2011) Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth. ISME J 5:1671–1682. doi:10.​1038/​ismej.​2011.​46 PubMedCentral CrossRef PubMed
    Dachev T, Horneck G, Häder D-P et al (2014) EXPOSE-R cosmic radiation time profile. Int J Astrobiol FirstView 1–9. doi:10.​1017/​S147355041400009​3
    Dartnell LR, Patel MR (2013) Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars. Int J Astrobiol 1–12. doi:10.​1017/​S147355041300033​5
    Dartnell LR, Desorgher L, Ward JM, Coates AJ (2007) Modelling the surface and subsurface Martian radiation environment: implications for astrobiology. Geophys Res Lett 34. doi:10.​1029/​2006GL027494 . 6 PP
    Dartnell LR, Storrie-Lombardi MC, Mullineaux CW et al (2011) Degradation of cyanobacterial biosignatures by ionizing radiation. Astrobiology 11:997–1016. doi:10.​1089/​ast.​2011.​0663 CrossRef PubMed
    Dartnell LR, Page K, Jorge-Villar SE et al (2012) Destruction of Raman biosignatures by ionising radiation and the implications for life detection on Mars. Anal Bioanal Chem 403:131–144. doi:10.​1007/​s00216-012-5829-6 CrossRef PubMed
    De Angelis S, De Sanctis MC, Ammannito E et al (2014) The Ma_Miss instrument performance. I: analysis of rocks powders by Martian VNIR spectrometer. Planet Space Sci. doi:10.​1016/​j.​pss.​2014.​06.​010
    De Vera J-P, Boettger U, Noetzel RDLT et al (2012) Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology. Planet Space Sci 74:103–110. doi:10.​1016/​j.​pss.​2012.​06.​010 CrossRef
    Direito SOL, Marees A, Röling WFM (2012) Sensitive life detection strategies for low-biomass environments: optimizing extraction of nucleic acids adsorbing to terrestrial and Mars analogue minerals. FEMS Microbiol Ecol 81:111–123. doi:10.​1111/​j.​1574-6941.​2012.​01325.​x CrossRef PubMed
    Edwards HGM, Moody CD, Jorge Villar SE, Wynn-Williams DD (2005a) Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: evaluation for Mars lander missions. Icarus 174:560–571. doi:10.​1016/​j.​icarus.​2004.​07.​029 CrossRef
    Edwards HGM, Moody CD, Newton EM et al (2005b) Raman spectroscopic analysis of cyanobacterial colonization of hydromagnesite, a putative martian extremophile. Icarus 175:372–381. doi:10.​1016/​j.​icarus.​2004.​12.​006 CrossRef
    Edwards HGM, Hutchinson IB, Ingley R et al (2013) Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission. Astrobiology 13:543–549. doi:10.​1089/​ast.​2012.​0872 PubMedCentral CrossRef PubMed
    Ehlmann BL, Edwards CS (2014) Mineralogy of the Martian surface. Annu Rev Earth Planet Sci 42:291–315. doi:10.​1146/​annurev-earth-060313-055024 CrossRef
    Farley KA, Malespin C, Mahaffy P et al (2014) In situ radiometric and exposure age dating of the Martian surface. Science 343:1247166. doi:10.​1126/​science.​1247166 CrossRef PubMed
    Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Orig Life Evol Biosph 10:223–235. doi:10.​1007/​BF00928400 CrossRef
    Fries MD, Bhartia R, Beegle LW et al (2010) Microscopic sample interrogation through multi-wavelength spectroscopy coupled with variable magnification imaging. LPI Contrib 1538:5214
    Gill D, Kilponen RG, Rimai L (1970) Resonance Raman scattering of laser radiation by vibrational modes of carotenoid pigment molecules in intact plant tissues. Nature 227:743–744. doi:10.​1038/​227743a0 CrossRef PubMed
    Gómez-Elvira J, Armiens C, Carrasco I, et al (2014) Curiosity’s rover environmental monitoring station: overview of the first 100 sols. J Geophys Res Planets. doi:10.​1002/​2013JE004576
    Griffiths A, Coates A, Muller JP et al (2008) Enhancing the effectiveness of the ExoMars PanCam instrument for astrobiology. In: Geophysical Research Abstracts
    Grilli Caiola M, Billi D (2007) Chroococcidiopsis from desert to Mars. In: Seckbach DJ (ed) Algae and cyanobacteria in extreme environments. Springer, Netherlands, pp 553–568CrossRef
    Groemer G, Sattler B, Weisleitner K et al (2014) Field trial of a dual-wavelength fluorescent emission (L.I.F.E.) Instrument and the Magma White Rover during the MARS2013 Mars analog mission. Astrobiology 14:391–405. doi:10.​1089/​ast.​2013.​1081 CrossRef PubMed
    Hassler DM, Zeitlin C, Wimmer-Schweingruber RF et al (2013) Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science 1244797. doi:10.​1126/​science.​1244797
    Horneck G (2000) The microbial world and the case for Mars. Planet Space Sci 48:1053–1063. doi:10.​1016/​S0032-0633(00)00079-9 CrossRef
    Hutchinson IB, Edwards HGM, Ingley R et al (2014) Preparations for the launch of the EXOMARS Raman Laser Spectrometer—a review of recent studies which highlight the astrobiological and geological capabilities of portable Raman instrumentation. LPI Contrib 1783:5093
    Isenbarger TA, Carr CE, Johnson SS et al (2008) The most conserved genome segments for life detection on Earth and other planets. Orig Life Evol Biosph 38:517–533. doi:10.​1007/​s11084-008-9148-z CrossRef PubMed
    Jehlička J, Edwards HGM, Oren A (2014) Raman spectroscopy of microbial pigments. Appl Environ Microbiol 80:3286–3295. doi:10.​1128/​AEM.​00699-14 PubMedCentral CrossRef PubMed
    Jorge-Villar S, Edwards H (2013) Microorganism response to stressed terrestrial environments: a Raman spectroscopic perspective of extremophilic life strategies. Life 3:276–294. doi:10.​3390/​life3010276 PubMedCentral CrossRef PubMed
    Lee C, Brocks JJ (2011) Identification of carotane breakdown products in the 1.64 billion year old Barney Creek Formation, McArthur Basin, northern Australia. Org Geochem 42:425–430. doi:10.​1016/​j.​orggeochem.​2011.​02.​006 CrossRef
    Lyon DY, Monier J-M, Dupraz S et al (2010) Integrity and biological activity of DNA after UV exposure. Astrobiology 10:285–292. doi:10.​1089/​ast.​2009.​0359 CrossRef PubMed
    Marshall CP, Marshall AO (2010) The potential of Raman spectroscopy for the analysis of diagenetically transformed carotenoids. Philos Trans R Soc Math Phys Eng Sci 368:3137–3144. doi:10.​1098/​rsta.​2010.​0016 CrossRef
    Marshall CP, Leuko S, Coyle CM et al (2007) Carotenoid analysis of halophilic Archaea by resonance Raman spectroscopy. Astrobiology 7:631–643. doi:10.​1089/​ast.​2006.​0097 CrossRef PubMed
    Martinez-Frias J, Amaral G, Vázquez L (2006) Astrobiological significance of minerals on Mars surface environment. Rev Environ Sci Biotechnol 5:219–231. doi:10.​1007/​s11157-006-0008-x CrossRef
    Martins Z (2011) In situ biomarkers and the life marker chip. Astron Geophys 52:1.34–1.35. doi:10.​1111/​j.​1468-4004.​2011.​52134.​x
    McKay CP (1997) The search for life on Mars. Orig Life Evol Biosph 27:263–289CrossRef PubMed
    McKay CP (2010) An origin of life on Mars. Cold Spring Harb Perspect Biol 2:a003509. doi:10.​1101/​cshperspect.​a003509 PubMedCentral CrossRef PubMed
    Ming DW, Archer PD, Glavin DP et al (2014) Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars. Science 343:1245267. doi:10.​1126/​science.​1245267 CrossRef PubMed
    Mustard JF, Murchie SL, Pelkey SM et al (2008) Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454:305–309. doi:10.​1038/​nature07097 CrossRef PubMed
    Nicholson WL (2009) Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol 17:243–250. doi:10.​1016/​j.​tim.​2009.​03.​004 CrossRef PubMed
    Pääbo S, Poinar H, Serre D et al (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679. doi:10.​1146/​annurev.​genet.​37.​110801.​143214 CrossRef PubMed
    Parnell J, Cullen D, Sims MR et al (2007) Searching for life on Mars: selection of molecular targets for ESA’s aurora ExoMars mission. Astrobiology 7:578–604. doi:10.​1089/​ast.​2006.​0110 CrossRef PubMed
    Parro V, Rivas LA, Gómez-Elvira J (2008) Protein microarrays-based strategies for life detection in astrobiology. Space Sci Rev 135:293–311. doi:10.​1007/​s11214-007-9276-1 CrossRef
    Parro V, de Diego-Castilla G, Rodríguez-Manfredi JA et al (2011) SOLID3: a multiplex antibody microarray-based optical sensor instrument for in situ Life detection in planetary exploration. Astrobiology 11:15–28. doi:10.​1089/​ast.​2010.​0501 CrossRef PubMed
    Rabbow E, Rettberg P, Barczyk S et al (2012) EXPOSE-E: an ESA astrobiology mission 1.5 years in space. Astrobiology 12:374–386. doi:10.​1089/​ast.​2011.​0760 CrossRef PubMed
    Rabbow E, Rettberg P, Barczyk S et al (2014) The astrobiological mission EXPOSE-R on board of the International Space Station. Int J Astrobiol FirstView 1–14. doi:10.​1017/​S147355041400020​2
    Roldán M, Thomas F, Castel S et al (2004) Noninvasive pigment identification in single cells from living phototrophic biofilms by confocal imaging spectrofluorometry. Appl Environ Microbiol 70:3745–3750. doi:10.​1128/​AEM.​70.​6.​3745-3750.​2004 PubMedCentral CrossRef PubMed
    Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101CrossRef PubMed
    Sankaranarayanan K, Lowenstein TK, Timofeeff MN et al (2014) Characterization of ancient DNA supports long-term survival of Haloarchaea. Astrobiology. doi:10.​1089/​ast.​2014.​1173 PubMedCentral PubMed
    Schopf JW (2002) The fossil record: tracing the roots of the cyanobacterial lineage. In: Potts M, Whitton BA (eds) The ecology of cyanobacteria. Springer, Netherlands, pp 13–35CrossRef
    Schuerger AC, Mancinelli RL, Kern RG et al (2003) Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars. Icarus 165:253–276. doi:10.​1016/​S0019-1035(03)00200-8 CrossRef PubMed
    Schwartzman D, Caldeira K, Pavlov A (2008) Cyanobacterial emergence at 2.8 Gya and greenhouse feedbacks. Astrobiology 8:187–203. doi:10.​1089/​ast.​2006.​0074 CrossRef PubMed
    Sims MR, Cullen DC, Rix CS et al (2012) Development status of the life marker chip instrument for ExoMars. Planet Space Sci 72:129–137. doi:10.​1016/​j.​pss.​2012.​04.​007 CrossRef
    Smith HD, Duncan AG, Neary PL et al (2012) In situ microbial detection in Mojave desert soil using native fluorescence. Astrobiology 12:247–257. doi:10.​1089/​ast.​2010.​0549 CrossRef PubMed
    Smith HD, Baqué M, Duncan AG et al (2014a) Comparative analysis of cyanobacteria inhabiting rocks with different light transmittance in the Mojave Desert: a Mars terrestrial analogue. Int J Astrobiol FirstView 1–7. doi:10.​1017/​S147355041400005​6
    Smith HD, McKay CP, Duncan AG et al (2014b) An instrument design for non-contact detection of biomolecules and minerals on Mars using fluorescence. J Biol Eng 8:16. doi:10.​1186/​1754-1611-8-16 PubMedCentral CrossRef PubMed
    Storrie-Lombardi MC, Sattler B (2009) Laser-induced fluorescence emission (LIFE): in situ nondestructive detection of microbial life in the ice covers of Antarctic lakes. Astrobiology 9:659–672CrossRef PubMed
    Stromberg JM, Applin DM, Cloutis EA et al (2014) The persistence of a chlorophyll spectral biosignature from Martian evaporite and spring analogues under Mars-like conditions. Int J Astrobiol 13:203–223. doi:10.​1017/​S147355041300040​2 CrossRef
    Tarcea N, Harz M, Rösch P et al (2007) UV Raman spectroscopy-a technique for biological and mineralogical in situ planetary studies. Spectrochim Acta A Mol Biomol Spectrosc 68:1029–1035. doi:10.​1016/​j.​saa.​2007.​06.​051 CrossRef PubMed
    Vago J, Gardini B, Kminek G et al (2006) ExoMars—searching for life on the Red Planet. ESA Bull 126:16–23
    Vandenabeele P, Jehlička J, Vítek P, Edwards HGM (2012) On the definition of Raman spectroscopic detection limits for the analysis of biomarkers in solid matrices. Planet Space Sci 62:48–54. doi:10.​1016/​j.​pss.​2011.​12.​006 CrossRef
    Verseux C, Baqué M, Lehto K et al (2015) Sustainable life support on Mars—the potential roles of cyanobacteria. Int J Astrobiol. doi:10.​1017/​S147355041500021​X
    Vítek P, Jehlička J, Edwards HGM, Osterrothová K (2009a) Identification of β-carotene in an evaporitic matrix—evaluation of Raman spectroscopic analysis for astrobiological research on Mars. Anal Bioanal Chem 393:1967–1975. doi:10.​1007/​s00216-009-2677-0 CrossRef PubMed
    Vítek P, Osterrothová K, Jehlička J (2009b) Beta-carotene—A possible biomarker in the Martian evaporitic environment: Raman micro-spectroscopic study. Planet Space Sci 57:454–459. doi:10.​1016/​j.​pss.​2008.​06.​001 CrossRef
    Vítek P, Edwards HGM, Jehlička J et al (2010) Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Philos Trans R Soc Math Phys Eng Sci 368:3205–3221. doi:10.​1098/​rsta.​2010.​0059 CrossRef
    Warren-Rhodes KA, McKay CP, Boyle LN et al (2013) Physical ecology of hypolithic communities in the central Namib Desert: the role of fog, rain, rock habitat, and light. J Geophys Res Biogeosci 118:1451–1460. doi:10.​1002/​jgrg.​20117 CrossRef
    Westall F, Loizeau D, Foucher F et al (2013) Habitability on Mars from a microbial point of Vvew. Astrobiology 13:887–897. doi:10.​1089/​ast.​2013.​1000 CrossRef PubMed
    Willerslev E, Hansen AJ, Rønn R et al (2004) Long-term persistence of bacterial DNA. Curr Biol 14:R9–10
    Winters YD, Lowenstein TK, Timofeeff MN (2013) Identification of carotenoids in ancient salt from Death Valley, Saline Valley, and Searles Lake, California, using laser Raman spectroscopy. Astrobiology 13:1065–1080. doi:10.​1089/​ast.​2012.​0952 CrossRef PubMed
    Wynn-Williams DD, Edwards HGM (2000) Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: overview of terrestrial antarctic habitats and Mars analogs. Icarus 144:486–503. doi:10.​1006/​icar.​1999.​6307 CrossRef
  • 作者单位:Mickael Baqué (1)
    Cyprien Verseux (1)
    Ute Böttger (2)
    Elke Rabbow (3)
    Jean-Pierre Paul de Vera (2)
    Daniela Billi (1) (4)

    1. Department of Biology, University of Rome Tor Vergata, Rome, Italy
    2. German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
    3. Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
    4. Dipartimento di Biologia, Università di Roma “Tor Vergata”, Rome, Italy
  • 刊物主题:Life Sciences, general; Astrophysics and Astroparticles; Earth Sciences, general; Astronomy, Observations and Techniques; Biochemistry, general;
  • 出版者:Springer Netherlands
  • ISSN:1573-0875
文摘
The space mission EXPOSE-R2 launched on the 24th of July 2014 to the International Space Station is carrying the BIOMEX (BIOlogy and Mars EXperiment) experiment aimed at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions. In order to prepare the analyses of the returned samples, ground-based simulations were carried out in Planetary and Space Simulation facilities. During the ground-based simulations, Chroococcidiopsis cells mixed with two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) were exposed to a Martian simulated atmosphere combined or not with UV irradiation corresponding to the dose received during a 1-year-exposure in low Earth orbit (or half a Martian year on Mars). Cell survival and preservation of potential biomarkers such as photosynthetic and photoprotective pigments or DNA were assessed by colony forming ability assays, confocal laser scanning microscopy, Raman spectroscopy and PCR-based assays. DNA and photoprotective pigments (carotenoids) were detectable after simulations of the space mission (570 MJ/m2 of UV 200–400 nm irradiation and Martian simulated atmosphere), even though signals were attenuated by the treatment. The fluorescence signal from photosynthetic pigments was differently preserved after UV irradiation, depending on the thickness of the samples. UV irradiation caused a high background fluorescence of the Martian mineral analogues, as revealed by Raman spectroscopy. Further investigation will be needed to ensure unambiguous identification and operations of future Mars missions. However, a 3-month exposure to a Martian simulated atmosphere showed no significant damaging effect on the tested cyanobacterial biosignatures, pointing out the relevance of the latter for future investigations after the EXPOSE-R2 mission. Data gathered during the ground-based simulations will contribute to interpret results from space experiments and guide our search for life on Mars.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700