Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum
详细信息    查看全文
  • 作者:A. Dudzik ; W. Snoch ; P. Borowiecki…
  • 关键词:Alcohol dehydrogenase ; Optically pure alcohols ; Hydrogen ; transfer biocatalysis ; Cofactor regeneration ; Stereoselective bioreduction
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:99
  • 期:12
  • 页码:5055-5069
  • 全文大小:1,085 KB
  • 参考文献:Abdul Rahman MB, Chaibakhsh N, Basri M, Salleh AB, Abdul Rahman RN (2009) Application of artificial neural network for yield prediction of lipase-catalyzed synthesis of dioctyl adipate. Appl Biochem Biotechnol 158:722-35. doi:10.-007/?s12010-008-8465-z View Article PubMed
    Alebic-Kolbah T, Paul Zavitsanos A (1997) Chiral bioanalysis by normal phase high-performance liquid chromatography-atmospheric pressure ionization tandem mass spectrometry. J Chromatogr A 759:65-7. doi:10.-016/?s0021-9673(96)00756-x View Article
    Alsafadi D, Paradisi F (2013) Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii. Extremophiles 17:115-22. doi:10.-007/?s00792-012-0498-0
    Banoglu E, Duffel M (1997) Studies on the interactions of chiral secondary alcohols with rat hydroxysteroid sulfotransferase STa. Drug Metab Dispos Biol Fate Chem 25:1304-310PubMed
    Blaser H-U, Malan C, Pugin B, Spindler F, Steiner H, Studer M (2003) Selective hydrogenation for fine chemicals: recent trends and new developments. Adv Synth Catal 345:103-51. doi:10.-002/?adsc.-00390000 View Article
    Borowiecki P, Bretner M (2013) Studies on the chemoenzymatic synthesis of (R)- and (S)-methyl 3-aryl-3-hydroxypropionates: the influence of toluene-pretreatment of lipase preparations on enantioselective transesterifications. Tetrahedron Asymmetry 24:925-36. doi:10.-016/?j.?tetasy.-013.-6.-04 View Article
    Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54View Article PubMed
    Breuer M, Ditrich K, Habicher T, Hauer B, Ke?eler M, Stürmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788-24. doi:10.-002/?anie.-00300599 View Article
    de Souza ROMA, Antunes OAC, Kroutil W, Kappe CO (2009) Kinetic resolution of rac-1-phenylethanol with immobilized lipases: a critical comparison of microwave and conventional heating protocols. J Org Chem 74:6157-162. doi:10.-021/?jo9010443 View Article PubMed
    Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, J?rnvall H, Oppermann U (2002) Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 277:25677-5684. doi:10.-074/?jbc.?M202160200 View Article PubMed
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision a.01. Gaussian, Inc, Wallingford
    Ghanem A, Aboul-Enein HY (2005) Application of lipases in kinetic resolution of racemates. Chirality 17:1-5. doi:10.-002/?chir.-0089 View Article PubMed
    Goldberg K, Edegger K, Kroutil W, Liese A (2006) Overcoming the thermodynamic limitation in asymmetric hydrogen transfer reactions catalyzed by whole cells. Biotechnol Bioeng 95:192-98. doi:10.-002/?bit.-1014 View Article PubMed
    Goldberg K, Schroer K, Lutz S, Liese A (2007) Biocatalytic ketone reduction–a powerful tool for the production of chiral alcohols–part I: processes with isolated enzymes. Appl Microbiol Biotechnol 76:237-48. doi:10.-007/?s00253-007-1002-0 View Article PubMed
    Goudar CT, Harris SK, McInerney MJ, Suflita JM (2004) Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert W function. J Microbiol Methods 59:317-26. doi:10.-016/?j.?mimet.-004.-6.-13 View Article PubMed
    Hasegawa J, Nanba H, Yasohara Y (2010) Application of a multiple-enzyme system for chiral alcohol production. In: Blaser H-U, Federseland H-J (eds) Asymmetric catalysis on industrial scale: challenges, approaches and solutions, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 79-09. doi:10.-002/-783527630639.?ch6 View Article
    H?ffken HW, Duong M, Friedrich T, Breuer M, Hauer B, Reinhardt R, Rabus R, Heider J (2006) Crystal structure and enzyme kinetics of the (S)-specific 1-phenylethanol dehydrogenase of the denitrifying bacterium strain EbN1. Biochemistry 45:82-3. doi:10.-021/?bi051596b View Article
    Itoh N, Matsuda M, Mabuchi M, Dairi T, Wang J (2002) Chiral alcohol production by NADH-de
  • 作者单位:A. Dudzik (1)
    W. Snoch (1) (2)
    P. Borowiecki (3)
    J. Opalinska-Piskorz (1)
    M. Witko (1)
    J. Heider (4)
    M. Szaleniec (1)

    1. Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
    2. Faculty of Chemical Engineering and Technology, Department of Biotechnology and Physical Chemistry, Cracow University of Technology, Warszawska 24 St., 31-155, Krakow, Poland
    3. Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
    4. Laboratory for Microbial Biochemistry, Philipps University of Marburg, Karl-von-Frisch Strasse 8, D-35043, Marburg, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Enzyme-catalyzed enantioselective reductions of ketones and keto esters have become popular for the production of homochiral building blocks which are valuable synthons for the preparation of biologically active compounds at industrial scale. Among many kinds of biocatalysts, dehydrogenases/reductases from various microorganisms have been used to prepare optically pure enantiomers from carbonyl compounds. (S)-1-phenylethanol dehydrogenase (PEDH) was found in the denitrifying bacterium Aromatoleum aromaticum (strain EbN1) and belongs to the short-chain dehydrogenase/reductase family. It catalyzes the stereospecific oxidation of (S)-1-phenylethanol to acetophenone during anaerobic ethylbenzene mineralization, but also the reverse reaction, i.e., NADH-dependent enantioselective reduction of acetophenone to (S)-1-phenylethanol. In this work, we present the application of PEDH for asymmetric reduction of 42 prochiral ketones and 11 β-keto esters to enantiopure secondary alcohols. The high enantioselectivity of the reaction is explained by docking experiments and analysis of the interaction and binding energies of the theoretical enzyme-substrate complexes leading to the respective (S)- or (R)-alcohols. The conversions were carried out in a batch reactor using Escherichia coli cells with heterologously produced PEDH as whole-cell catalysts and isopropanol as reaction solvent and cosubstrate for NADH recovery. Ketones were converted to the respective secondary alcohols with excellent enantiomeric excesses and high productivities. Moreover, the progress of product formation was studied for nine para-substituted acetophenone derivatives and described by neural network models, which allow to predict reactor behavior and provides insight on enzyme reactivity. Finally, equilibrium constants for conversion of these substrates were derived from the progress curves of the reactions. The obtained values matched very well with theoretical predictions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700