Determination of molar mass distributions of highly oxidized dialdehyde cellulose by size exclusion chromatography and asymmetric flow field-flow fractionation
详细信息    查看全文
  • 作者:Irina Sulaeva ; Karl Michael Klinger ; Hassan Amer ; Ute Henniges ; Thomas Rosenau…
  • 关键词:Periodate oxidation ; Cellulose ; Chain cleavage ; Dialdehyde cellulose ; Molar mass distribution ; SEC ; AsFlFFF ; MALLS ; Structure
  • 刊名:Cellulose
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:22
  • 期:6
  • 页码:3569-3581
  • 全文大小:862 KB
  • 参考文献:Berggren R, Berthold F, Sj枚holm E, Lindstr枚m M (2003) Improved methods for evaluating the molar mass distributions of cellulose in kraft pulp. J Appl Polym Sci 88:1170鈥?179. doi:10.鈥?002/鈥媋pp.鈥?1767 CrossRef
    Calvini P, Gorassini A, Luciano G, Franceschi E (2006) FTRI and WAXS analysis of periodate oxycellulose: evidence for a cluster mechanism of oxidation. Vib Spectrosc 40:177鈥?83. doi:10.鈥?016/鈥媕.鈥媣ibspec.鈥?005.鈥?8.鈥?04 CrossRef
    Carmali S, Brocchini S (2014) Chapter 13: polyacetals. In: Deng SGKTL (ed) Natural and synthetic biomedical polymers. Elsevier, Oxford, pp 219鈥?33CrossRef
    Cheong K-L, Wu D-T, Zhao J, Li S-P (2015) A rapid and accurate method for the quantitative estimation of natural polysaccharides and their fractions using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector. J Chromatogr A 1400:98鈥?06. doi:10.鈥?016/鈥媕.鈥媍hroma.鈥?015.鈥?4.鈥?54 CrossRef
    Fiedorowicz M, Para A (2006) Structural and molecular properties of dialdehyde starch. Carbohydr Polym 63:360鈥?66. doi:10.鈥?016/鈥媕.鈥媍arbpol.鈥?005.鈥?8.鈥?54 CrossRef
    Habibi Y, Chanzy H, Vignon M (2006) Tempo-mediated surface oxidation of cellulose whiskers. Cellulose 13:679鈥?87. doi:10.鈥?007/鈥媠10570-006-9075-y CrossRef
    Hasani M, Henniges U, Idstroem A, Nordstierna L, Westman G, Rosenau T, Potthast A (2013) Nano-cellulosic materials: the impact of water on their dissolution in DMAc/LiCl. Carbohydr Polym 98:1565鈥?572. doi:10.鈥?016/鈥媕.鈥媍arbpol.鈥?013.鈥?7.鈥?01 CrossRef
    Kim U-J, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488鈥?92. doi:10.鈥?021/鈥媌m0000337 CrossRef
    Kim U-J, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56:7鈥?0. doi:10.鈥?016/鈥媕.鈥媍arbpol.鈥?003.鈥?0.鈥?13 CrossRef
    Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29:1635鈥?642. doi:10.鈥?016/鈥媕.鈥媘sec.鈥?009.鈥?1.鈥?06 CrossRef
    Li H, Wu B, Mu C, Lin W (2011) Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohydr Polym 84:881鈥?86. doi:10.鈥?016/鈥媕.鈥媍arbpol.鈥?010.鈥?2.鈥?26 CrossRef
    Maekawa E, Kosaki T, Koshijima T (1986) Periodate oxidation of mercerized cellulose and regenerated cellulose. Wood Res Bull Wood Res Inst Kyoto Univ 73:44鈥?9
    Marianne M-F (1998) Molecular weights and molecular-weight distributions of cellulose and cellulose nitrates during ultrasonic and mechanical degradation. Cellul Deriv Am Chem Soc 688:184鈥?93
    Perlin AS (2006) Glycol-cleavage oxidation. In: Derek H (ed) Advances in carbohydrate chemistry and biochemistry. Academic Press, New York, pp 183鈥?50
    Potthast A, Rosenau T, Kosma P (2006) Analysis of oxidized functionalities in cellulose. In: Klemm D (ed) Polysaccharides II. Springer, Berlin, pp 1鈥?8CrossRef
    Potthast A, Kostic M, Schiehser S, Kosma P, Rosenau T (2007) Studies on oxidative modifications of cellulose in the periodate system: molecular weight distribution and carbonyl group profiles. Holzforschung 61:662鈥?67. doi:10.鈥?515/鈥婬F.鈥?007.鈥?99 CrossRef
    Potthast A, Schiehser S, Rosenau T, Kostic M (2009) Oxidative modifications of cellulose in the periodate system: reduction and beta-elimination reactions. Holzforschung 63:12鈥?7. doi:10.鈥?515/鈥婬F.鈥?009.鈥?08 CrossRef
    Potthast A, Radosta S, Saake B, Lebioda S, Heinze T, Henniges U, Isogai A, Koschella A, Kosma P, Rosenau T, Schiehser S, Sixta H, Strli膷 M, Strobin G, Vorwerg W, Wetzel H (2015) Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose 22:1591鈥?613. doi:10.鈥?007/鈥媠10570-015-0586-2 CrossRef
    Rosenau T, Potthast A, Krainz K, Yoneda Y, Dietz T, Shields Z-I, French A (2011) Chromophores in cellulosics, VI. First isolation and identification of residual chromophores from aged cotton linters. Cellulose 18:1623鈥?633. doi:10.鈥?007/鈥媠10570-011-9585-0 CrossRef
    Rosenau T, Potthast A, Krainz K, Hettegger H, Henniges U, Yoneda Y, Rohrer C, French A (2014) Chromophores in cellulosics, XI: isolation and identification of residual chromophores from bacterial cellulose. Cellulose 21:2271鈥?283. doi:10.鈥?007/鈥媠10570-014-0289-0 CrossRef
    Sihtola H (1960) Chemical properties of modified celluloses. Makromol Chem 35:250鈥?65. doi:10.鈥?002/鈥媘acp.鈥?960.鈥?20350113 CrossRef
    Siller M, Amer H, Bacher M, Roggenstein W, Rosenau T, Potthast A (2015) Effects of periodate oxidation on cellulose polymorphs. Cellulose. doi:10.鈥?007/鈥媠10570-015-0648-5
    Stefanovic B, Rosenau T, Potthast A (2013) Effect of sonochemical treatments on the integrity and oxidation state of cellulose. Carbohydr Polym 92:921鈥?27. doi:10.鈥?016/鈥媕.鈥媍arbpol.鈥?012.鈥?9.鈥?39 CrossRef
    Varma AJ, Chavan VB (1995) A study of crystallinity changes in oxidised celluloses. Polym Degrad Stab 49:245鈥?50. doi:10.鈥?016/鈥?141-3910(95)87006-7 CrossRef
    Vold IMN, Christensen BE (2005) Periodate oxidation of chitosans with different chemical compositions. Carbohydr Res 340:679鈥?84. doi:10.鈥?016/鈥媕.鈥媍arres.鈥?005.鈥?1.鈥?02 CrossRef
    Vold IMN, Kristiansen KA, Christensen BE (2006) A study of the chain stiffness and extension of alginates, in vitro epimerized alginates, and periodate-oxidized alginates using size-exclusion chromatography combined with light scattering and viscosity detectors. Biomacromolecules 7:2136鈥?146. doi:10.鈥?021/鈥媌m060099n CrossRef
    Xiang Q, Lee YY, Pettersson PO, Torget RW (2003) Heterogeneous aspects of acid hydrolysis of [alpha]-cellulose. Appl Biochem Biotechnol 107:505鈥?14. doi:10.鈥?385/鈥婣BAB:鈥?07:鈥?-3:鈥?05 CrossRef
  • 作者单位:Irina Sulaeva (1)
    Karl Michael Klinger (1)
    Hassan Amer (1)
    Ute Henniges (1)
    Thomas Rosenau (1)
    Antje Potthast (1)

    1. Division of Chemistry of Renewables, Department of Chemistry, University of Natural Resources and Life Sciences, Konrad-Lorenz-Stra脽e 24, 3430, Tulln, Austria
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
Dialdehyde cellulose (DAC) has gained increasing interest because its (masked) aldehyde functionalities promise a rich follow-up chemistry and further conversion into different derivatives with varying properties. So far, the question of degradation upon DAC production and the resulting molar mass changes have remained unanswered since the problem of molar mass determination of DACs had not been solved. In this study, we present a comparison of two methods based on aqueous eluants, size exclusion chromatography and asymmetric flow field-flow fractionation (AsFlFFF), to determine the molar mass distribution of highly oxidized and thus water-soluble DACs, and to elucidate the impact of oxidation on the chain length of different cellulose substrates. Molar masses were determined by multi-angle laser light scattering in the case of both separation systems. The measurements were complemented by dynamic light scattering. AsFlFFF demonstrated an overall better separation efficiency, but at the expense of increased time consumption for method development. The results of molar mass analysis strongly depended on the eluant. Hemiacetal crosslinks are stable in near-neutral, low ionic strength eluants, while they have a tendency to be cleaved in acidic eluants or in solvents of higher ionic strength. By comparison of different dissolution strategies the optimal conditions for DAC analysis are proposed for both separation techniques. It is concluded that the extent of degradation upon dissolution can be significantly minimized by controlling the dissolution parameters, but degradation cannot be avoided completely. Keywords Periodate oxidation Cellulose Chain cleavage Dialdehyde cellulose Molar mass distribution SEC AsFlFFF MALLS Structure

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700