Electrochemical gating of single osmium molecules tethered to Au surfaces
详细信息    查看全文
  • 作者:Santiago Herrera ; Catherine Adam…
  • 关键词:Self ; assembled monolayer ; Osmium complex ; Electronic transfer ; Electrochemical scanning tunneling spectroscopy ; gating
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:20
  • 期:4
  • 页码:957-967
  • 全文大小:865 KB
  • 参考文献:1.Appleby AJ, Zagal JH (2011) Free energy relationships in electrochemistry: a history that started in 1935. J Solid State Electrochem 15(7–8):1811–1832CrossRef
    2.Bedioui F, Griveau S, Nyokong T, Appleby AJ, Caro CA, Gulppi M, Ochoa G, Zagal JH (2007) Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols. Phys Chem Chem Phys 9(26):3383–3396CrossRef
    3.Bingqian X, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301(5637):1221–1223CrossRef
    4.Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29(2):277–283CrossRef
    5.Chidsey CED (1991) Free energy and temperature dependence of electron transfer at the metal-electrolyte interface. Science 251:919–922CrossRef
    6.Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I J Chem Phys 24:966CrossRef
    7.Marcus RA (1957) On the theory of oxidation-reduction reactions involving electron transfer. II. Applications to data on the rates of isotopic exchange reactions. J Chem Phys 26:867CrossRef
    8.Marcus RA (1959) On the theory of eelectrochemical and chemical electron transfer processes. Can J Chem 37:155CrossRef
    9.Marcus RA (1965) On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J Chem Phys 43:679CrossRef
    10.Marcus RA (1993) Electron transfer reactions in chemistry: theory and experiment (Nobel lecture). Angew Chem Int Ed Engl 32(8):1111–1121CrossRef
    11.Tao N (1996) Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. Phys Rev Lett 76:4066CrossRef
    12.Schmickler W, Tao NJ (1997) Measuring the inverted region of an electron transfer reaction with a scanning tunneling microscope. Electrochim Acta 42(18):2809–2815CrossRef
    13.Albrecht T, Guckian A, Ulstrup J, Vos JG (2005) Transistor-like behavior of transition metal complexes. Nano Lett 5:1451CrossRef
    14.Albrecht T, Moth-Poulsen K, Christensen JB, Guckian A, Bjornholm T, Vos JG, Ulstrup J (2006) In situ scanning tunnelling spectroscopy of inorganic transition metal complexes. Faraday Discuss 131:265CrossRef
    15.Albrecht T, Moth-Poulsen K, Christensen JB, Guckian A, Bjørnholm T, Vos JG, Ulstrup J (2006) In situ scanning tunnelling spectroscopy of inorganic transition metal complexes. Faraday Discuss 131:265–279CrossRef
    16.Albretch T, Guckian A, Ulstrup J, Vos JG (2005) Transistor effects and in situ STM of redox molecules at room temperature. IEEE Trans Nanotechnol 4:430CrossRef
    17.Albretch T, Moth-Poulsen K, Christensen JB, Bjornholm T, Ulstrup J (2006) Scanning tunneling spectroscopy in an ionic liquid. J Am Chem Soc 128:6574CrossRef
    18.Li C, Mishchenko A, Li Z, Pobelov I, Wandlowski T, Li XQ, Würthner F, Bagrets A, Evers F (2008) Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions. J Phys Condens Matter 20(37)
    19.Pobelov I, Zhihai L, Wandlowski TH (2009) Electrolyte gating in redox-active tunneling junctions an electrochemical STM approach. J Am Chem Soc 130:16045CrossRef
    20.Li Z, Liu Y, Mertens SFL, Pobelov IV, Wandlowski T (2010) From redox gating to quantized charging. J Am Chem Soc 132(23):8187–8193CrossRef
    21.Han B, Li Z, Li C, Pobelov I, Su G, Aguilar-Sanchez R, Wandlowski T (2009) From self-assembly to charge transport with single molecules—an electrochemical approach. Top Curr Chem 287
    22.Zhou XS, Liu L, Fortgang P, Lefevre AS, Serra-Muns A, Raouafi N, Amatore C, Mao BW, Maisonhaute E, Schöllhorn B (2011) Do molecular conductances correlate with electrochemical rate constants? Experimental insights. J Am Chem Soc 133(19):7509–7516CrossRef
    23.Ricci AM, Calvo EJ, Martin S, Nichols RJ (2010) Electrochemical scanning tunneling spectroscopy of redox-active molecules bound by Au-C bonds. J Am Chem Soc 132(8):2494-+CrossRef
    24.Ricci A, Bonazzola C, Calvo EJ (2006) An FT-IRRAS study of nitrophenyl mono- and multilayers electro-deposited on gold by reduction of the diazonium salt. Phys Chem Chem Phys 8(37):4297–4299CrossRef
    25.Saby C, Ortiz B, Champagne GY, Bélanger D (1997) Electrochemical modification of glassy carbon electrode using aromatic diazonium salts. 1. Blocking effect of 4-nitrophenyl and 4-carboxyphenyl groups. Langmuir 13 (25):6805–6813
    26.Ricci AM, Rolli C, Rothacher S, Baraldo L, Bonazzola C, Calvo EJ, Tognalli N, Fainstein A (2007) Electron transfer at Au surfaces modified by tethered osmium bipyridine-pyridine complexes. J Solid State Electrochem 11:1511–1520CrossRef
    27.Ricci AM, Tagliazucchi M, Calvo EJ (2012) Charge regulation in redox active monolayers embedded in proton exchanger surfaces. Phys Chem Chem Phys 14(28):9988–9995CrossRef
    28.Ricci AM, Tognalli N, de la Llave E, Vericat C, Mendez De Leo LP, Williams FJ, Scherlis D, Salvarezzac R, Calvo EJ (2011) Electrochemistry of os(2,2′-bpy)(2)ClPyCH2NHCOPh tethered to Au electrodes by S-Au and C-Au junctions. Phys Chem Chem Phys 13(12):5336–5345CrossRef
    29. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2 edn. Wiley, New York
    30.Gerischer H (1960) Z Phys Chem NF 26:223CrossRef
    31. W. Schmickler, Frank S. (2003) Quantum theory of electrochemical electron-transfer reactions. In: Calvo EJ (ed) Interfacial kinetics and mass transport, vol 2, Ch. 2. Encyclopedia of electrochemistry. Wiley VCH, Weinheim, pp 31–48
    32.Nitzan A (2001) Electron transmission through molecules and molecular interfaces. Annu Rev Phys Chem 52:681CrossRef
    33.Nitzan A (2003) Electronic tunnel factors in molecular electron transfer and molecular conduction. In: Calvo EJ (ed) Interfacial kinetics and mass transport, vol 2. encyclopedia of electrochemistry. Wiley VCH, Weinheim, pp. 49–78
    34.Miller CJ, Rubinstein I (1995) Physical electrochemistry. Marcel Dekker, New York
    35.Zhang J, Kuznetsov AM, Medvedev IG, Chi Q, Albrecht T, Jensen PS, Ulstrup J (2008) Single-molecule electron transfer in electrochemical environments. Chem Rev 108:2737–2791CrossRef
    36.Kuznetsov A, Ulstrup J M (2000) Mechanisms of in situ scanning tunnelling microscopy of organized redox molecular assemblies. J Phys Chem A 104:11531CrossRef
    37.Zhang J, Chi Q, Kuznetsov A, Hansen AG M, Wackerbarth H, HEM C, JET A, Ulstrup J (2002) Electronic properties of functional biomolecules at metal/aqueous solution interfaces. J Phys Chem B 106:1131CrossRef
    38.Ricci AM, Mendez De Leo LP, Williams FJ, Calvo EJ (2012) Some evidence for the formation of an azo bond during the electroreduction of diazonium salts on Au substrates. ChemPhysChem 13(8):2119–2127CrossRef
    39.Vericat C, Vela ME, Salvarezza RC (2005) Self-assembled monolayers of alkanethiols on Au(111): surface structures, defects and dynamics. Phys Chem Chem Phys 7(18):3258–3268CrossRef
    40.Kakiuchi T, Iida M, Gon N, Hobara D, Imabayashi SI, Niki K (2001) Miscibility of adsorbed 1-undecanethiol and 11-mercaptoundecanoic acid species in binary self-assembled monolayers on Au(111). Langmuir 17(5):1599–1603CrossRef
    41.De La Llave E, Ricci A, Calvo EJ, Scherlis DA (2008) Binding between carbon and the Au(111) surface and what makes it different from the S-Au(111) bond. J Phys Chem C 112(45):17611–17617CrossRef
    42.Amatore C, Bouret Y, Maisonhaute E, Abruña HD, Goldsmith JI (2003) Electrochemistry within molecules using ultrafast cyclic voltammetry. C R Chim 6(1):99–115CrossRef
    43.Creager SE, Wooster TT (1998) A new way of using ac voltammetry to study redox kinetics in electroactive monolayers. Anal Chem 70(20):4257–4263CrossRef
    44.Creager SE, Yu CJ, Bamdad C, O’ Connor S, MacLean T, Lam E, Chong Y, Olsen GT, Luo J, Gozin M, Kayyem JF (1999) Electron transfer at electrodes through conjugated “molecular wire” bridges. J Am Chem Soc 121:1059–1064CrossRef
    45.Finklea HO (2003) Electron transfer. In: JFR M, Rubinstein I (eds) Modified electrodes, vol 10. Encyclopedia of electrochemistry. Wley-VCH, Weinheim, pp. 625–650
  • 作者单位:Santiago Herrera (1)
    Catherine Adam (1)
    Alejandra Ricci (1) (2)
    Ernesto J. Calvo (1)

    1. INQUIMAE. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, AR-1419, Buenos Aires, Argentina
    2. Aluar, Puerto Madryn, Chubut, U1200IA, Argentina
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
The electrochemical study of electron transport between Au electrodes and the redox molecule Os[(bpy)2(PyCH2 NH2CO-]ClO4 tethered to molecular linkers of different length (1.3 to 2.9 nm) to Au surfaces has shown an exponential decay of the rate constant k ET 0 with a slope β = 0.53 consistent with through bond tunneling to the redox center. Electrochemical gating of single osmium molecules in an asymmetric tunneling nano-gap between a Au(111) substrate electrode modified with the redox molecules and a Pt-Ir tip of a scanning tunneling microscope was achieved by independent control of the reference electrode potential in the electrolyte, E ref − E s, and the tip-substrate bias potential, E bias. Enhanced tunneling current at the osmium complex redox potential was observed as compared to the off resonance set point tunneling current with a linear dependence of the overpotential at maximum current vs. the E bias. This corresponds to a sequential two-step electron transfer with partial vibration relaxation from the substrate Au(111) to the redox molecule in the nano-gap and from this redox state to the Pt-Ir tip according to the model of Kuznetsov and Ulstrup (J Phys Chem A 104: 11531, 2000). Comparison of short and long linkers of the osmium complex has shown the same two-step ET (electron transfer) behavior due to the long time scale in the complete reduction-oxidation cycle in the electrochemical tunneling spectroscopy (EC-STS) experiment as compared to the time constants for electron transfer for all linker distances, k ET 0.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700