Asymptotic throughput for large-scale wireless networks with general node density
详细信息    查看全文
  • 作者:Cheng Wang (1) (2)
    Changjun Jiang (1) (2)
    Xiang-Yang Li (3) (4)
    Yunhao Liu (5) (6)
  • 关键词:Wireless ad hoc networks ; Asymptotic throughput ; Random networks ; Generalized physical model ; Multicast throughput
  • 刊名:Wireless Networks
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:19
  • 期:5
  • 页码:559-575
  • 全文大小:1089KB
  • 参考文献:1. Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. / IEEE Transactions on Information Theory 46(2), 388-04. CrossRef
    2. Zheng, R. (2008). Asymptotic bounds of information dissemination in power-constrained wireless networks. / IIEEE Transactions on Wireless communication, 7(1), 251-59. doi:10.1109/TWC.2008.060474 . CrossRef
    3. Xie, L., & Kumar, P. (2004). A network information theory for wireless communication: scaling laws and optimal operation. / IEEE Transactions on Information Theory, 50(5), 748-67. CrossRef
    4. ?zgür, A., Lévêque, O., & Tse, D. (2007). Hierarchical cooperation achieves optimal capacity scaling in Ad Hoc networks. / IIEEE Transactions on Information Theory, 53(10), 3549-572. CrossRef
    5. Agarwal, A., & Kumar, P. R. (2004). Capacity bounds for Ad hoc and hybrid wireless networks. / ACM SIGCOMM Computer Communication Review, / 34(3), 71-1.
    6. Li, X.-Y., Liu, Y., Li, S., & Tang, S. (2010). Multicast capacity of wireless Ad hoc networks under Gaussian channel model. / IEEE/ACM Transactions on Networking, / 18(4), 1145-157.
    7. Keshavarz-Haddad, A., & Riedi, R. (2008). Multicast capacity of large homogeneous multihop wireless networks. In / Proceedings of the IEEE WiOpt.
    8. Franceschetti, M., Dousse, O., Tse, D., & Thiran, P. (2007). Closing the gap in the capacity of wireless networks via percolation theory. / IIEEE Transactions on Information Theory, 53(3), 1009-018. CrossRef
    9. Meester, R., & Roy, R. (1996). / Continuum Percolation. Cambridge: Cambridge University Press. CrossRef
    10. Keshavarz-Haddad, A., Ribeiro, V., & Riedi, R. (2006). Broadcast capacity in multihop wireless networks. In / Proceedings of the ACM MobiCom.
    11. Shakkottai, X., Liu, S., & Srikant, R. (2007). The multicast capacity of large multihop wireless networks. In / Proceedings of the ACM MobiHoc.
    12. Keshavarz-Haddad, A., & Riedi, R. (2007). Bounds for the capacity of wireless multihop networks imposed by topology and demand. In / Proceedings of the MobiHoc.
    13. Hu, C., Wang, X., Nie, D., & Zhao, J. (2009). Multicast scaling laws with hierarchical cooperation. In / Proceedings of the IEEE INFOCOM.
    14. Moscibroda, T. (2007). The worst-case capacity of wireless sensor networks. In Proceedings of the ACM/IEEE IPSN.
    15. Huang, W., Wang, X., & Zhang, Q. (2010). Capacity scaling in mobile wireless ad hoc network with infrastructure support. In / to appear in Proceedings of the IEEE ICDCS.
    16. Zheng, R. (2006). Information dissemination in power-constrained wireless networks. In / Proceedings of the IEEE INFOCOM.
    17. Liu, B., Thiran, P., & Towsley, D. (2007). Capacity of a wireless ad hoc network with infrastructure. In / Proceedings of the ACM Mobihoc.
    18. Dousse, O., & Thiran, P. (2004). Connectivity vs capacity in dense ad hoc networks. In / Proceedings of the IEEE INFOCOM.
    19. Penrose, M. (1997). The longest edge of the random minimal spanning tree. / Annals of Applied Probability, 7 , 340-61. CrossRef
    20. Wang, C., Li, X.-Y., Tang, S., & Jiang, C. (2010). Multicast capacity scaling for cognitive networks: General extended primary network. In / Proceedings of the IEEE MASS, pp. 262-71.
    21. Chau, C., Chen, M., & Liew, S. (2009). Capacity of large-scale csma wireless networks. In / Proceedings of the ACM MobiCom.
    22. Li, X.-Y. (2009). Multicast capacity of wireless ad hoc networks. / IEEE/ACM Transactions on Networking, 17(3) , 950-61. CrossRef
    23. Grimmett, G. (1999). Percolation. Berlin: Springer.
    24. Wang, C., Li, X.-Y., Jiang, C., Tang, S., & Liu, Y., Multicast throughput for hybrid wireless networks under gaussian channel model. / IEEE Transactions on Mobile Computing (PrePrints), / 10(6), 839-52.
    25. Li., X.-Y., Tang, S., & Ophir, F. (2007). Multicast capacity for large scale wireless ad hoc networks, In / Proceedings of the ACM MobiCom.
    26. Xie, L., & Kumar, P. (2006). On the path-loss attenuation regime for positive cost and linear scaling of transport capacity in wireless networks. / IEEE/ACM Transactions on Networking, 14, 2313-328. CrossRef
    27. Grossglauser, M., & Tse, D. (2002). Mobility increases the capacity of ad hoc wireless networks. / IEEE/ACM Transactions on Networking, 10 (4), 477-86. CrossRef
    28. Sharma, G., Mazumdar, R., & Shroff, N. (2007). Delay and capacity trade-offs in mobile ad hoc networks: A global perspective. / IEEE/ACM Transactions on Networking, 15(5), 981-92. CrossRef
    29. Garetto, M., Giaccone, P., & Leonardi E. (2009). Capacity scaling in ad hoc networks with heterogeneous mobile nodes: the super-critical regime. / IEEE/ACM Transactions on Networking (TON), 17(5), 1522-535. CrossRef
    30. Garetto, M., Giaccone, P., & Leonardi, E. (2009). Capacity scaling in ad hoc networks with heterogeneous mobile nodes: the subcritical regime. / IEEE/ACM Transactions on Networking, 17(6), 1888-901. CrossRef
    31. Tavli, B. (2006). Broadcast capacity of wireless networks. / IEEE Communications Letters, 10(2), 68-9. CrossRef
    32. Keshavarz-Haddad, A., & Riedi, R. (2007). On the broadcast capacity of multihop wireless networks: Interplay of power, density and interference, In / Proceedings of the IEEE SECON -7, pp. 314-23.
    33. Jacquet, P., & Rodolakis, G. (2005). Multicast scaling properties in massively dense ad hoc networks. In: / Proceedings of the 11th international conference on parrallel and distribution systems - workshops, pp. 93-9.
    34. Mitzenmacher, M., & Upfal, E. (2005). / Probability and computing: Randomized algorithms and probabilistic analysis. Cambridge, UK: Cambridge University Press. CrossRef
  • 作者单位:Cheng Wang (1) (2)
    Changjun Jiang (1) (2)
    Xiang-Yang Li (3) (4)
    Yunhao Liu (5) (6)

    1. Department of Computer Science, Tongji University, Shanghai, China
    2. Key Laboratory of Embedded System and Service Computing, Ministry of Education, Shanghai, China
    3. The Tsinghua National Laboratory for Information Science and Technology (TNLIST), Department of Computer Science and Engineering, Tongji University, Shanghai, China
    4. The Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
    5. The TNLIST and School of Software, Tsinghua University, Beijing, China
    6. CSE, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
  • ISSN:1572-8196
文摘
We study the asymptotic throughput for a large-scale wireless ad hoc network consisting of n nodes under the generalized physical model. We directly compute the throughput of multicast sessions to unify the unicast and broadcast throughputs. We design two multicast schemes based on the so-called ordinary arterial road system and parallel arterial road system, respectively. Correspondingly, we derive the achievable multicast throughput by taking account of all possible cases of n s ?=?ω(1) and 1?≤?em class="a-plus-plus">n d ?≤?em class="a-plus-plus">n???, rather than only the cases of $n_s=\Uptheta(n)$ as in most related works, where n s and n d denote the number of sessions and the number of destinations of each session, respectively. Furthermore, we consider the network with a general node density $\lambda \in [1,n]$ , while the models in most related works are either random dense network (RDN) or random extended network (REN) where the density is λ?=?n and λ?=?1, respectively, which further enhances the generality of this work. Particularly, for the special case of our results by letting λ?=?1 and $n_s=\Uptheta(n)$ , we show that for some regimes of n d , the multicast throughputs achieved by our schemes are better than those derived by the well-known percolation-based schemes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700