Melatonin reduces PERK-eIF2α-ATF4-mediated endoplasmic reticulum stress during myocardial ischemia–reperfusion injury: role of RISK and SAFE pathways interaction
详细信息    查看全文
  • 作者:Liming Yu ; Buying Li ; Meng Zhang ; Zhenxiao Jin ; Weixun Duan ; Guolong Zhao…
  • 刊名:Apoptosis
  • 出版年:2016
  • 出版时间:July 2016
  • 年:2016
  • 卷:21
  • 期:7
  • 页码:809-824
  • 全文大小:7,640 KB
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Oncology
    Cancer Research
    Cell Biology
    Biochemistry
    Virology
  • 出版者:Springer Netherlands
  • ISSN:1573-675X
  • 卷排序:21
文摘
Recently, we demonstrated that melatonin reduced protein kinase RNA (PKR)-like ER kinase (PERK)-eukaryotic initiation factor 2 alpha (eIF2α)-activating transcription factor-4 (ATF4)-mediated myocardial endoplasmic reticulum (ER) stress and apoptosis during myocardial ischemia–reperfusion (MI/R) injury. However, the underlying mechanisms are still not clear. Myocardial reperfusion injury salvage kinase (RISK) pathway as well as survivor activating factor enhancement (SAFE) pathway are two pivotal intrinsic pro-survival signaling cascades. In this study, we performed in vivo and in vitro experiment to investigate the ameliorative effect of melatonin on ER stress with a focus on RISK and SAFE pathways interaction. Male C57Bl/6 mice received melatonin (300 μg/25 g/day, 3 days before MI/R surgery; 300 μg/25 g, 25 min before the onset of ischemia) pre-treatment with or without the administration of LY294002 (a PI3K/Akt inhibitor), U0126 (an ERK1/2 inhibitor) or AG490 (a STAT3 pathway inhibitor). H9c2 cells were pre-treated with melatonin (100 μM, 8 h) in the presence or absence of LY294002, U0126 or AG490. Compared with the I/R-injured group, melatonin effectively reduced myocardial apoptosis, oxidative stress and improved cardiac function. In addition, melatonin pre-treatment also increased the phosphorylation of Akt, GSK-3β, ERK1/2 and STAT3 and reduced PERK-eIF2α-ATF4-mediated ER stress. However, these effects were blocked by LY294002, U0126 or AG490. Additionally, either LY294002 or U0126 treatment could inhibit STAT3 phosphorylation, whereas AG490 administration also reduced both Akt and ERK1/2 phosphorylation, indicating an interplay exists between RISK and SAFE pathways in melatonin’s cardioprotective effect. In summary, our study demonstrates that RISK and SAFE pathways mediate the cardioprotective effect of melatonin against MI/R injury. Melatonin pre-treatment attenuates PERK-eIF2α-ATF4-mediated ER stress and apoptosis during MI/R injury via RISK and SAFE pathways interaction.KeywordsMelatoninEndoplasmic reticulum stressMyocardial ischemia–reperfusion injuryReperfusion injury salvage kinase pathwaySurvivor activating factor enhancement pathway

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700