Statistical characteristics of medium-scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data
详细信息    查看全文
  • 作者:Alexey V. Oinats ; Nozomu Nishitani ; Pavlo Ponomarenko…
  • 关键词:Medium ; scale traveling ionospheric disturbances ; Atmospheric gravity waves ; High ; frequency radar ; Hokkaido East SuperDARN radar ; Ekaterinburg HF radar
  • 刊名:Earth, Planets and Space
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:68
  • 期:1
  • 全文大小:2,385 KB
  • 参考文献:Afraimovich EL, Boitman ON, Zhovty EI, Kalikhman AD, Pirog TG (1999) Dynamics and anisotropy of traveling ionospheric disturbances as deduced from transionospheric sounding data. Rad Sci 34:477–487CrossRef
    Afraimovich EL, Lipko YV, Vugmeister B (2000) Determining dynamic parameters of different-scale ionospheric irregularities over northern Siberia. J Atmos Sol Terr Phys 62:133–140CrossRef
    Afraimovich EL, Perevalova NP, Zhivetiev IV (2008) Relative amplitude of the total electron content variations depending on geomagnetic activity. Adv Space Res 42:1231–1237CrossRef
    Arnold NF, Jones T, Robinson T (1998) Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data. Ann Geophys 16:1392–1399CrossRef
    Bilitza D, Altadill D, Zhang Y, Mertens C, Truhlik V, Richards P, McKinnell L-A, Reinisch BW (2014) The International Reference Ionosphere 2012 - a model of international collaboration. J Space Weather Space Clim 4(A07):1–12. doi:10.​1051/​swsc/​2014004
    Blanchard GT, Sundeen S, Baker KB (2009) Probabilistic identification of high-frequency radar backscatter from the ground and ionosphere based on spectral characteristics. Rad Sci 44:RS5012. doi:10.​1029/​2009RS004141 CrossRef
    Bland EC, McDonald AJ, de Larquier S, Devlin JC (2014) Determination of ionospheric parameters in real time using SuperDARN HF Radars. J Geophys Res 119(7):5830–5846CrossRef
    Davies K (1990) Ionospheric radio. Peter Peregrinus Ltd, LondonCrossRef
    Ding F, Wan W, Liu L, Afraimovich EL, Voeykov SV, Perevalova NP (2008) A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003-2005. J Geophys Res 113(A00A01). doi:10.​1029/​2008JA013037
    Drob DP, Emmert JT, Crowley G, Picone JM, Shepherd GG, Skinner W, Hays P, Niciejewski RJ, Larsen M, She CY, Meriwether JW, Hernandez G, Jarvis MJ, Sipler DP, Tepley CA, O’Brien MS, Bowman JR, Wu Q, Murayama Y, Kawamura S, Reid IM, Vincent RA (2008) An empirical model of the Earth’s horizontal wind fields: HWM07. J Geophys Res 113:A12304. doi:10.​1029/​2008JA013668 CrossRef
    Emery BA, Lathuillere C, Richards PG, Roble RG, Buonsanto MJ, Knipp DJ, Wilkinson P, Sipler DP, Niciejewski R (1999) Time dependent thermospheric neutral response to the 2–11 November 1993 storm period. J Atmos Sol Terr Phys 61:329–350CrossRef
    Emmert JT, Drob DP, Shepherd GG, Hernandez G, Jarvis MJ, Meriwether JW, Niciejewski RJ, Sipler DP, Tepley CA (2008) DWM07 global empirical model of upper thermospheric storm-induced disturbance winds. J Geophys Res 113:A11319. doi:10.​1029/​2008JA013541 CrossRef
    Fritts DC, Vadas SL (2008) Gravity wave penetration into the thermosphere: sensitivity to solar cycle variations and mean winds. Ann Geophys 26:3841–3861CrossRef
    Frissell NA, Baker JBH, Ruohoniemi JM, Gerrard AJ, Miller ES, Marini JP, West ML, Bristow WA (2014) Climatology of medium-scale traveling ionospheric disturbances observed by the midlatitude Blackstone SuperDARN radar. J Geophys Res 119(9):7679–7697CrossRef
    Fukushima D, Shiokawa K, Otsuka Y, Ogawa T (2012) Observation of equatorial nighttime medium-scale traveling ionospheric disturbances in 630-nm airglow images over 7 years. J Geophys Res 117:A10324CrossRef
    Grocott A, Hosokawa K, Ishida T, Lester M, Milan SE, Freeman MP, Sato N, Yukimatu AS (2013) Characteristics of medium-scale traveling ionospheric disturbances observed near the Antarctic Peninsula by HF radar. J Geophys Res 118(9):5830–5841CrossRef
    He L-S, Dyson P, Parkinson ML, Wan W (2004) Studies of medium scale travelling ionospheric disturbances using TIGER SuperDARN radar sea echo observations. Ann Geophys 22:4077–4088CrossRef
    Hines (1960) Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38:1441–1481CrossRef
    Hocke K, Schlegel K (1996) A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995. Ann Geophys 14:917–940
    Hunsucker RD (1982) Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Rev Geophys Space Phys 20(2):293–315. doi:10.​1029/​RG020i002p00293 CrossRef
    Ichihara A, Nishitani N, Ogawa T, Tsugawa T (2013) Northward-propagating nighttime medium-scale traveling ionospheric disturbances observed with SuperDARN Hokkaido HF radar and GEONET. Adv Polar Sci 24:42–49. doi:10.​3724/​SP.​J.​1085.​2013.​00042
    Ishida T, Hosokawa K, Shibata T, Suzuki S, Nishitani N, Ogawa T (2008) SuperDARN observations of daytime MSTIDs in the auroral and mid-latitudes: possibility of long-distance propagation. Geophys Res Lett 35:L13102. doi:10.​1029/​2008GL034623 CrossRef
    Kalikhman AD (1980) Medium-scale traveling ionospheric disturbances and thermospheric winds in the F-region. J Atmos Terr Phys 42:697–703CrossRef
    Karhunen TJT, Robinson TR, Arnold NF, Lester M (2006) Determination of the parameters of travelling ionospheric disturbances in the high-latitude ionosphere using CUTLASS coherent scatter radars. J Atmos Solar-Terrestrial Phys 68:558–567. doi:10.​1016/​j.​jastp.​2005.​03.​021 CrossRef
    Klausner V, Fagundes PR, Sahai Y, Wrasse CM, Pillat VG, Becker-Guedes F (2009) Observations of GW/TID oscillations in the F2 layer at low latitude during high and low solar activity, geomagnetic quiet and disturbed periods. J Geophys Res 114:A02313. doi:10.​1029/​2008JA013448
    Kotake N, Otsuka Y, Ogawa T, Tsugawa T, Saito A (2007) Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planets Space 59:95–102CrossRef
    Koustov AV, Yakymenko KN, Nishitani N, Ponomarenko PV (2013) Hokkaido HF radar signatures of periodically reoccurring nighttime medium-scale traveling ionospheric disturbances detected at short ranges. J Geophys Res 119(2):1200–1218. doi:10.​1002/​2013JA019422 CrossRef
    Lastovicka J (2001) Effects of gravity and planetary waves on the lower ionosphere as obtained from radio wave absorption measurements. Phys Chem Earth C 26(6):381–386
    Medvedev AV, Ratovsky KG, Tolstikov MV, Alsatkin SS, Scherbakov AA (2013) Studying of the spatial–temporal structure of wavelike ionospheric disturbances on the base of Irkutsk incoherent scatter radar and Digisonde data. J Atmos Solar-Terrestrial Phys 105–106:350–357. doi:10.​1016/​j.​jastp.​2013.​09.​001 CrossRef
    Milan SE, Jones TB, Robinson TR, Thomas EC, Yeoman TK (1997) Interferometric evidence for the observation of ground backscatter originating behind the CUTLASS coherent HF radars. Ann Geophys 15:29–39CrossRef
    Oinats AV, Kurkin VI, Kutelev KA, Nishitani N (2012) The outlook of SuperDARN radars application for monitoring of the ionospheric dynamics in Russia. Physical Bases Instrum 1(3):3–18 (in Russian)
    Oinats AV, Kurkin VI, Nishitani N, Saito A (2013) On the determination of traveling ionospheric disturbances parameters using SuperDARN radar data. Electromagn Waves Electron Syst 18(8):30–39 (in Russian)
    Oinats AV, Kurkin VI, Nishitani N (2015) Statistical study of medium-scale traveling ionospheric disturbances using SuperDARN Hokkaido ground backscatter data for 2011. Earth Planets Space 67:22. doi:10.​1186/​s40623-015-0192-4 CrossRef
    Oinats AV, Nishitani N, Ponomarenko P, Ratovsky K (2016) Diurnal and seasonal behavior of the Hokkaido East SuperDARN ground backscatter: simulation and observation. Earth Planets Space. doi:10.1186/s40623-015-0378-9.
    Otsuka Y, Shiokawa K, Ogawa T, Wilkinson P (2004) Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers. Geophys Res Lett 31:L15803. doi:10.​1029/​2004GL020262 CrossRef
    Otsuka Y, Kotake N, Shiokawa K, Ogawa T, Tsugawa T, Saito A (2011) Statistical study of medium-scale traveling ionospheric disturbances observed with a GPS receiver network in Japan. In: Abdu M, Pancheva D, Bhattacharyya A (eds) Aeronomy of the Earth’s Atmosphere and Ionosphere. Springer Netherlands, Dordrecht
    Otsuka Y, Suzuki K, Nakagawa S, Nishioka M, Shiokawa K, Tsugawa T (2013) GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann Geophys 31:163–172. doi:10.​5194/​angeo-31-163-2013 CrossRef
    Perkins F (1973) Spread F and ionospheric currents. J Geophys Res 78:218–226CrossRef
    Ponomarenko P, Nishitani N, Oinats AV, Tsuya T, St.-Maurice J-P (2015) Application of ground scatter returns for calibration of HF interferometry data. Earth Planets Space 67:138. doi:10.​1186/​s40623-015-0310-3 CrossRef
    Ratovsky KG, Oinats AV and Nishitani N (2015) Comparison of polar, sub-polar and mid-latitude ionospheric variability using ionosonde and SuperDARN data. In: Proceedings of Progress in electromagnetics research symposium, Prague, 6–9 July 2015
    Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric regression. Cambridge University Press, New YorkCrossRef
    Samson JC, Greenwald RAA, Ruohoniemi JM, Frey A, Baker KB (1990) Goose Bay radar observations of Earth-reflected, atmospheric gravity waves in the high-latitude ionosphere. J Geophys Res 95(A6):7693–7709CrossRef
    Shiokawa K, Ihara C, Otsuka Y, Ogawa T (2003a) Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images. J Geophys Res 108(A1):1052. doi:10.​1029/​2002JA009491
    Shiokawa K, Otsuka Y, Ihara C, Ogawa T, Rich FJ (2003b) Ground and satellite observations of nighttime medium-scale traveling ionospheric disturbance at midlatitude. J Geophys Res 108(A4):1145. doi:10.​1029/​2002JA009639
    Shiokawa K, Otsuka Y, Ogawa T (2009) Propagation characteristics of nighttime mesospheric and thermospheric waves observed by optical mesosphere thermosphere imagers at middle and low latitudes. Earth Planets Space 61(4):479–491CrossRef
    Stocker AJ, Arnold NF, Jones TB (2000) The synthesis of travelling ionospheric disturbance (TID) signatures in HF radar observations using ray tracing. Ann Geophys 18:56–64. doi:10.​1007/​s00585-000-0056-4 CrossRef
    Tsugawa T, Saito A, Otsuka Y (2004) A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan. J Geophys Res 109:A06302. doi:10.​1029/​2003JA010302
    Tsugawa T, Kotake N, Otsuka Y, Saito A (2007) Medium-scale traveling ionospheric disturbances observed by GPS receiver network in Japan: a short review. GPS Solut 11:139–144. doi:10.​1007/​s10291-006-0045-5 CrossRef
    Tsunoda RT (2006) On the coupling of layer instabilities in the nighttime midlatitude ionosphere. J Geophys Res 111:A11304. doi:10.​1029/​2006JA011630 CrossRef
    Vadas SL, Fritts DC (2006) Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection. J Geophys Res 111:A10S12. doi:10.​1029/​2005JA011510
    Vadas SL (2007) Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J Geophys Res 112:A06305. doi:10.​1029/​2006JA011845
    Waldock JA, Jones TB (1984) The effects of neutral winds on the propagation of medium-scale atmospheric gravity waves at mid-latitudes. J Atmos Terr Phys 46(3):217–231CrossRef
    Waldock JA, Jones TB (1986) HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes. J Atmos Terr Phys 48(3):245–260CrossRef
    Yokoyama T, Hysell DL (2010) A new midlatitude ionosphere electrodynamics coupling model (MIECO): latitudinal dependence and propagation of medium-scale traveling ionospheric disturbances. Geophys Res Lett 37:L08105. doi:10.​1029/​2010GL042598 CrossRef
    Yokoyama T (2013) Scale dependence and frontal formation of nighttime medium-scale traveling ionospheric disturbances. Geophys Res Lett 40:4515–4519. doi:10.​1002/​grl.​50905 CrossRef
  • 作者单位:Alexey V. Oinats (1)
    Nozomu Nishitani (2)
    Pavlo Ponomarenko (3) (4)
    Oleg I. Berngardt (1)
    Konstantin G. Ratovsky (1)

    1. Institute of Solar-Terrestrial Physics SB RAS, 664033, Lermontov St., 126a, P.O. Box 291, Irkutsk, Russia
    2. Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
    3. University of Saskatchewan, Saskatoon, SK, Canada
    4. Solar-Terrestrial Environment Laboratory (now—Institute for Space-Earth Environmental Research), Nagoya University, Nagoya, Japan
  • 刊物类别:Earth Sciences, general; Geology; Geophysics/Geodesy;
  • 刊物主题:Earth Sciences, general; Geology; Geophysics/Geodesy;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1880-5981
文摘
We present a statistical study of medium-scale traveling ionospheric disturbances (MSTIDs) using the Hokkaido East (43.53° N, 143.61° E) and Ekaterinburg (56.42° N, 58.53° E) high-frequency (HF) radar data. Radar datasets are available from 2007 to 2014 for the Hokkaido and from 2013 to 2014 for the Ekaterinburg radar. In the case of the Hokkaido East radar, we have utilized the elevation angle information to study the MSTIDs propagating at the heights of the E and F ionospheric regions separately. We have analyzed the diurnal and seasonal behavior of the following medium-scale traveling ionospheric disturbance (MSTID) parameters: propagation direction, apparent horizontal velocity and wavelength, period, and relative amplitude. The F region MSTID azimuthal patterns were observed to be quite similar by the two radars. The E region northwestward MSTIDs (from 280° to 320°) were typical of summer daytime. Comparison with the horizontal wind model (HWM07) has showed that the dominant MSTID propagation directions match the anti-wind direction well, at least during sunlight hours. We have also found that the wavelength and period tend to decrease with an increase in solar activity. On the contrary, the relative amplitude increases with an increase in solar activity. Moreover, the relative amplitude tends to increase with increasing auroral electrojet (AE) index, as do the wavelength and velocity. Keywords Medium-scale traveling ionospheric disturbances Atmospheric gravity waves High-frequency radar Hokkaido East SuperDARN radar Ekaterinburg HF radar

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700