Biodegradation of atrazine by Arthrobacter sp. C3, isolated from the herbicide-contaminated corn field
详细信息    查看全文
  • 作者:H. Wang ; Y. Liu ; J. Li ; M. Lin ; X. Hu
  • 关键词:Atrazine ; Biodegradation ; Arthrobacter ; Hydroxyatrazine
  • 刊名:International Journal of Environmental Science and Technology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:13
  • 期:1
  • 页码:257-262
  • 全文大小:596 KB
  • 参考文献:Aislabie J, Hunter D, Ryburn J, Fraser R, Northcott GL, Di HJ (2004) Atrazine mineralisation rates in New Zealand soils are affected by time since atrazine exposure. Soil Res 42(7):783–792CrossRef
    Bouquard C, Ouazzani J, Prome J, Michel-Briand Y, Plesiat P (1997) Dechlorination of atrazine by a Rhizobium sp. isolate. Appl Environ Microbiol 63(3):862–866
    Cai B, Han Y, Liu B, Ren Y, Jiang S (2003) Isolation and characterization of an atrazine-degrading bacterium from industrial wastewater in China. Lett Appl Microbiol 36(5):272–276CrossRef
    Camargo FAO, Bento FM, Okeke BC, Frankenberger WT (2004) Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32. Biol Trace Elem Res 97(2):183–194CrossRef
    de Souza ML, Seffernick J, Martinez B, Sadowsky MJ, Wackett LP (1998) The atrazine catabolism genes atzABC are widespread and highly conserved. J Bacteriol 180(7):1951–1954
    Enticknap JJ, Kelly M, Peraud O, Hill RT (2006) Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol 72(5):3724–3732CrossRef
    Fernández L, Valverde C, Gómez M (2013) Isolation and characterization of atrazine-degrading Arthrobacter sp. strains from Argentine agricultural soils. Ann Microbiol 63(1):207–214CrossRef
    Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4(3):173–182CrossRef
    Kar S, Swaminathan T, Baradarajan A (1997) Biodegradation of phenol and cresol isomer mixtures by Arthrobacter. World J Microbiol Biotechnol 13(6):659–663CrossRef
    Labana S, Singh V, Basu A, Pandey G, Jain RK (2005) A microcosm study on bioremediation of p-nitrophenol-contaminated soil using Arthrobacter protophormiae RKJ100. Appl Microbiol Biotechnol 68(3):417–424CrossRef
    Li Q, Li Y, Zhu X, Cai B (2008) Isolation and characterization of atrazine-degrading Arthrobacter sp. AD26 and use of this strain in bioremediation of contaminated soil. J Environ Sci 20(10):1226–1230CrossRef
    Louisa Wessels P (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177(1–3):81–89
    Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183(19):5684–5697CrossRef
    Mongodin EF, Shapir N, Daugherty SC, DeBoy RT, Emerson JB, Shvartzbeyn A, Radune D, Vamathevan J, Rigg F, Grinberg V, Khouri H, Wackett LP, Nelson KE, Sadowsky MJ (2006) Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2(12):2094–2106CrossRef
    Mulbry WW, Zhu H, Nour SM, Topp E (2002) The triazine hydrolase gene trzN from Nocardioides sp. strain C190: cloning and construction of gene-specific primers. FEMS Microbiol Lett 206(1):75–79CrossRef
    O’Loughlin E, Sims G, Traina S (1999) Biodegradation of 2-methyl, 2-ethyl, and 2-hydroxypyridine by an Arthrobacter sp. isolated from subsurface sediment. Biodegradation 10(2):93–104CrossRef
    Rousseaux S, Hartmann A, Soulas G (2001) Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Ecol 36(2–3):211–222CrossRef
    Sajjaphan K, Shapir N, Wackett LP, Palmer M, Blackmon B, Tomkins J, Sadowsky MJ (2004) Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-Kilobase region and are functional in Escherichia coli. Appl Environ Microbiol 70(7):4402–4407CrossRef
    Singh P, Suri CR, Cameotra SS (2004) Isolation of a member of Acinetobacter species involved in atrazine degradation. Biochem Biophys Res Commun 317(3):697–702CrossRef
    Smith D, Alvey S, Crowley DE (2005) Cooperative catabolic pathways within anatrazine-degrading enrichment culture isolated from soil. FEMS Microbiol Ecol 53(2):265–273CrossRef
    Strong LC, Rosendahl C, Johnson G, Sadowsky MJ, Wackett LP (2002) Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68(12):5973–5980CrossRef
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599CrossRef
    Topp E, Zhu H, Nour SM, Houot S, Lewis M, Cuppels D (2000) Characterization of an atrazine-degrading Pseudaminobacter sp. isolated from Canadian and French agricultural soils. Appl Environ Microbiol 66(7):2773–2782CrossRef
    Tortella GR, Mella-Herrera RA, Sousa DZ, Rubilar O, Acuña JJ, Briceño G, Diez MC (2013) Atrazine dissipation and its impact on the microbial communities and community level physiological profiles in a microcosm simulating the biomixture of on-farm biopurification system. J Hazard Mater 260:459–467CrossRef
    Udiković-Kolić N, Hršak D, Devers M, Klepac-Ceraj V, Petrić I, Martin-Laurent F (2010) Taxonomic and functional diversity of atrazine-degrading bacterial communities enriched from agrochemical factory soil. J Appl Microbiol 109(1):355–367
    Wang H, Su JQ, Zheng XW, Tian Y, Xiong XJ, Zheng TL (2009a) Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3. Int Biodeterior Biodegrad 63(4):395–399CrossRef
    Wang H, Zheng XW, Su JQ, Tian Y, Xiong XJ, Zheng TL (2009b) Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. J Hazard Mater 171(1–3):654–659CrossRef
    Westerberg K, Elväng AM, Stackebrandt E, Jansson JK (2000) Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50(6):2083–2092CrossRef
    Yamazaki K, Fujii K, Iwasaki A, Takagi K, Satsuma K, Harada N, Uchimura T (2008) Different substrate specificities of two triazine hydrolases (TrzNs) from Nocardioides species. FEMS Microbiol Lett 286(2):171–177CrossRef
    Yang C, Li Y, Zhang K, Wang X, Ma C, Tang H, Xu P (2010) Atrazine degradation by a simple consortium of Klebsiella sp. A1 and Comamonas sp. A2 in nitrogen enriched medium. Biodegradation 21(1):97–105CrossRef
    Yanze-Kontchou C, Gschwind N (1994) Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain. Appl Environ Microbiol 60(12):4297–4302
  • 作者单位:H. Wang (1)
    Y. Liu (1) (2)
    J. Li (1) (2)
    M. Lin (1)
    X. Hu (1)

    1. Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
    2. University of Chinese Academy of Science, Beijing, 100049, China
  • 刊物主题:Environment, general; Environmental Science and Engineering; Environmental Chemistry; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Soil Science & Conservation; Ecotoxicology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1735-2630
文摘
The s-triazine herbicide, atrazine, has been well acknowledged as an important source causing contamination of soil, water, and sediment. Functional bacteria are one of the critical candidates for removing residual atrazine from contaminated environments. Here, seven bacterial strains showing atrazine-degrading ability were isolated from long-term atrazine-contaminated corn field and identified based on 16S rRNA gene sequencing. Among these bacterial isolates, a bacterium, later designated as Arthrobacter sp. C3, was found to be capable of completely degrading 25 mg/l atrazine. The high-performance liquid chromatography–mass spectrometry (HPLC–MS) analysis indicated that the atrazine was dechlorinated to hydroxyatrazine, a non-phytotoxic compound. The functional gene, trzN, which participates in the first step of atrazine degradation was successfully amplified and showed high similarity to the known trzN genes from different bacterial genera. Based on the HPLC–MS and the functional gene analysis, the functional bacterium C3 was speculated to degrade atrazine via dechlorination, which detoxified the herbicide. This study suggested a great potential of Arthrobacter sp. C3 to be used in indigenous bioremediation of atrazine in field. Keywords Atrazine Biodegradation Arthrobacter Hydroxyatrazine

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700