Pattern recognition in multilinear space and its applications: mathematics, computational algorithms and numerical validations
详细信息    查看全文
文摘
We clarify the mathematical equivalence between low-dimensional singular value decomposition and low-order tensor principal component analysis for two- and three-dimensional images. Furthermore, we show that the two- and three-dimensional discrete cosine transforms are, respectively, acceptable approximations to two- and three-dimensional singular value decomposition and classical principal component analysis. Moreover, for the practical computation in two-dimensional singular value decomposition, we introduce the marginal eigenvector method, which was proposed for image compression. For three-dimensional singular value decomposition, we also show an iterative algorithm. To evaluate the performances of the marginal eigenvector method and two-dimensional discrete cosine transform for dimension reduction, we compute recognition rates for six datasets of two-dimensional image patterns. To evaluate the performances of the iterative algorithm and three-dimensional discrete cosine transform for dimension reduction, we compute recognition rates for datasets of gait patterns and human organs. For two- and three-dimensional images, the two- and three-dimensional discrete cosine transforms give almost the same recognition rates as the marginal eigenvector method and iterative algorithm, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700