Bradykinin induces NO and PGF2α production via B2 receptor activation from cultured porcine basilar arterial endothelial cells
详细信息    查看全文
  • 作者:Md. Zahorul Islam (1) (2)
    Kaori Miyagi (1)
    Tsukasa Matsumoto (1)
    Ha Thi Thanh Nguyen (1)
    Emi Yamazaki-Himeno (1)
    Mitsuya Shiraishi (1)
    Atsushi Miyamoto (1)
  • 关键词:Bradykinin ; Cerebral artery ; Endothelium ; Nitric oxide ; Prostaglandin F2α
  • 刊名:Naunyn-Schmiedeberg's Archives of Pharmacology
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:387
  • 期:7
  • 页码:697-702
  • 全文大小:281 KB
  • 参考文献:1. Ainslie PN, Brassard P (2014) Why is the neural control of cerebral autoregulation so controversial? F1000 Prim Rep 6:14. doi:10.12703/P6-14 , PMID: 24669295
    2. Antonova M (2013) Prostaglandins and prostaglandin receptor antagonism in migraine. Dan Med J 60:B4635, PMID: 23673269
    3. Bevan R, Dodge J, Nichols P, Poseno T, Vijayakumaran E, Wellman T, Bevan JA (1998) Responsiveness of human infant cerebral arteries to sympathetic nerve stimulation and vasoactive agents. Pediatr Res 44:730-39. doi:10.1203/00006450-199811000-00016 , PMID: 9803455 CrossRef
    4. Campos AH, Calixto JB (1994) Mechanisms involved in the contractile responses of kinins in rat portal vein rings: mediation by B1 and B2 receptors. J Pharmacol Exp Ther 268:902-09, PMID: 8114004
    5. Gauthier KM, Cepura CJ, Campbell WB (2013) ACE inhibition enhances bradykinin relaxations through nitric oxide and B1 receptor activation in bovine coronary arteries. Biol Chem 394:1205-212. doi:10.1515/hsz-2012-0348 , PMID: 23729620 CrossRef
    6. Golias C, Charalabopoulos A, Stagikas D, Charalabopoulos K, Batistatou A (2007) The kinin system–bradykinin: biological effects and clinical implications. Multiple role of the kinin system–bradykinin. Hippokratia 11:124-28, PMID: 19582206
    7. Gunnett CA, Lund DD, Howard MA III, Chu Y, Faraci FM, Heistad DD (2002) Gene transfer of inducible nitric oxide synthase impairs relaxation in human and rabbit cerebral arteries. Stroke 33:2292-296. doi:10.1161/01.STR.0000027427.86177.D4 , PMID: 12215601 CrossRef
    8. Hashiba Y, Tosaka M, Saito N, Imai H, Shimizu T, Sasaki T (2007) Vasorelaxing effect of the Rho-kinase inhibitor, Y-27632, in isolated canine basilar arteries. Neurol Res 29:485-89. doi:10.1179/016164107X164076 , PMID: 17806208 CrossRef
    9. Hortobágyi L, Kis B, Hrabák A, Horváth B, Huszty G, Schweer H, Benyó B, Sándor P, Busija DW, Benyó Z (2007) Adaptation of the hypothalamic blood flow to chronic nitric oxide deficiency is independent of vasodilator prostanoids. Brain Res 1131:129-37. doi:10.1016/j.brainres.2006.11.009 , PMID: 17161389 CrossRef
    10. Jadhav V, Jabre A, Lin SZ, Lee TJ (2004) EP1- and EP3-receptors mediate prostaglandin E2-induced constriction of porcine large cerebral arteries. J Cereb Blood Flow Metab 24:1305-316. doi:10.1097/01.WCB.0000139446.61789.14 , PMID: 15625406 CrossRef
    11. Kawai Y, Ohhashi T (1991) Prostaglandin F-induced endothelium-dependent relaxation in isolated monkey cerebral arteries. Am J Physiol 260:H1538–H1543, PMID: 2035674
    12. Kinoshita H, Katusic ZS (1997) Nitric oxide and effects of cationic polypeptides in canine cerebral arteries. J Cereb Blood Flow Metab 17:470-80. doi:10.1097/00004647-199704000-00013 , PMID: 9143230 CrossRef
    13. Lauredo IT, Forteza RM, Botvinnikova Y, Abraham WM (2004) Leukocytic cell sources of airway tissue kallikrein. Am J Physiol Lung Cell Mol Physiol 286:L734–L740. doi:10.1152/ajplung.00129.2003 , PMID: 14660481 CrossRef
    14. Leeb-Lundberg LM, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 57:27-7. doi:10.1124/pr.57.1.2 , PMID: 15734727 CrossRef
    15. Michiels C, Arnould T, Knott I, Dieu M, Remacle J (1993) Stimulation of prostaglandin synthesis by human endothelial cells exposed to hypoxia. Am J Physiol 264:C866–C874, PMID: 8476019
    16. Miyamoto A, Hashiguchi Y, Obi T, Ishiguro S, Nishio A (2007) Ibuprofen or ozagrel increases NO release and L-nitro arginine induces TXA2 release from cultured porcine basilar arterial endothelial cells. Vasc Pharmacol 46:85-0. doi:10.1016/j.vph.2006.06.018 , PMID: 17113355 CrossRef
    17. Miyamoto A, Murata S, Nishio A (2002) Role of ACE and NEP in bradykinin-induced relaxation and contraction response of isolated porcine basilar artery. Naunyn-Schmiedeberg’s Arch Pharmacol 365:365-70. doi:10.1007/s00210-002-0543-0 , PMID: 12012022 CrossRef
    18. Miyamoto A, Ishiguro S, Nishio A (1999) Stimulation of bradykinin B2-receptors on endothelial cells induces relaxation and contraction in porcine basilar artery in vitro. Br J Pharmacol 128:241-47. doi:10.1038/sj.bjp.0702783 , PMID: 10498858 CrossRef
    19. Miyamoto A, Nakamoto T, Matsuoka Y, Ishiguro S, Nishio A (1998) The role of thromboxane A2 in regulating porcine basilar arterial tone. J Vet Pharmacol Ther 21:223-27. doi:10.1046/j.1365-2885.1998.00135.x , PMID: 9673964 CrossRef
    20. Miyamoto A, Laufs U, Pardo C, Liao JK (1997) Modulation of bradykinin receptor ligand binding affinity and its coupled G-proteins by nitric oxide. J Biol Chem 272:19601-9608, PMID: 9235967 CrossRef
    21. Nithipatikom K, Laabs ND, Isbell MA, Campbell WB (2003) Liquid chromatographic–mass spectrometric determination of cyclooxygenase metabolites of arachidonic acid in cultured cells. J Chromatogr B Anal Technol Biomed Life Sci 785:135-45. doi:10.1016/S1570-0232(02)00906-6 , PMID: 12535846 CrossRef
    22. Norel X (2007) Prostanoid receptors in the human vascular wall. Sci World J 7:1359-374. doi:10.1100/tsw.2007.184 , PMID: 17767355 CrossRef
    23. Sipkema P, van der Linden PJ, Fanton J, Latham RD (1996) Responses to mechanical stimuli of isolated basilar and femoral arteries of the Rhesus monkey are different. Heart Vessel 11:18-6, PMID: 9119801 CrossRef
    24. Sun H, Mayhan WG (2001) Superoxide dismutase ameliorates impaired nitric oxide synthase-dependent dilatation of the basilar artery during chronic alcohol consumption. Brain Res 891:116-22. doi:10.1016/S0006-8993(00)03207-8 , PMID: 11164814 CrossRef
    25. Tsuji T, Cook DA (1995) Vasoconstrictor mechanism of neuropeptides augmented after endothelial removal in isolated, perfused canine basilar arteries. Neurol Res 17:193-00, PMID: 7543980
    26. Wambi-Kiéssé CO, Katusic ZS (1999) Inhibition of copper/zinc superoxide dismutase impairs NO.-mediated endothelium-dependent relaxations. Am J Physiol 276:H1043–H1048, PMID: 10070090
    27. Wienecke T, Olesen J, Ashina M (2011) Discrepancy between strong cephalic arterial dilatation and mild headache caused by prostaglandin D2 (PGD2). Cephalalgia 31:65-6. doi:10.1177/0333102410373156 , PMID: 20974593 CrossRef
    28. Yoshikawa K, Kita Y, Kishimoto K, Shimizu T (2006) Profiling of eicosanoid production in the rat hippocampus during kainic acid-induced seizure: dual phase regulation and differential involvement of COX-1 and COX-2. J Biol Chem 281:14663-4669. doi:10.1074/jbc.M511089200 , PMID: 16569634 CrossRef
  • 作者单位:Md. Zahorul Islam (1) (2)
    Kaori Miyagi (1)
    Tsukasa Matsumoto (1)
    Ha Thi Thanh Nguyen (1)
    Emi Yamazaki-Himeno (1)
    Mitsuya Shiraishi (1)
    Atsushi Miyamoto (1)

    1. Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
    2. Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensing, 2202, Bangladesh
  • ISSN:1432-1912
文摘
Our previous in vitro study demonstrated that bradykinin (BK) induced relaxation and contraction of porcine basilar artery (PBA) mediated via activation of endothelial B2 receptors. The main relaxing and contracting factors appeared to be nitric oxide (NO) and prostaglandin (PG) H2, respectively, but not thromboxane A2. After obtaining these findings, we succeeded in cultivating endothelial cells isolated from the PBA. Although PGH2 has different functionally active isoforms, including PGD2, PGE2, and PGF2α, we have not yet clarified which of them is responsible for BK-induced contraction. Therefore, we attempted to quantify NO and PG production from cultured porcine basilar arterial endothelial cells (PBAECs) and to identify which of the PGs was involved in this contraction. The cultured PBAECs produced NO spontaneously, and BK enhanced this production in a concentration-dependent manner. The NO synthase inhibitor Nω-nitro-l-arginine (L-NNA) and the B2 receptor antagonist HOE-140, but not the B1 receptor antagonist des-Arg9, [Leu8]-BK, completely abolished it. In a functional study, PGD2, PGE2, and PGF2α induced concentration-dependent contractions in isolated porcine basilar arterial rings, the order of maximum contraction being PGF2α-?PGE2-?PGD2. The cultured PBAECs produced PGD2, PGE2, and PGF2α spontaneously, and BK significantly enhanced the production of PGF2α, but not that of PGD2 and PGE2. The B2, but not B1, antagonist completely abolished the BK-enhanced production of PGF2α. These results suggest that BK induces production of NO and PGF2α simultaneously from PBAECs via B2 receptor activation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700