A numerical study on the performance of micro-vibrating flow pumps using the immersed boundary method
详细信息    查看全文
  • 作者:Osman Omran Osman ; Atsushi Shirai ; Satoyuki Kawano
  • 关键词:Micro ; VFP ; Numerical ; Immersed boundary method ; Micropump ; Flow rate ; Pumping head
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:19
  • 期:3
  • 页码:595-608
  • 全文大小:3,344 KB
  • 参考文献:Abramchuk S, Kramarenko E, Stepanov G, Nikitin LV, Filipcsei G, Khokhlov AR, Zrínyi M (2007) Novel highly elastic magnetic materials for dampers and seals: part I. Preparation and characterization of the elastic materials. Polym Adv Technol 18(11):883-90. doi:10.-002/?pat.-24 CrossRef
    Chen L (2010) An integral approach for large deflection cantilever beams. Int J Non-linear Mech 45(3):301-05. doi:10.-016/?j.?ijnonlinmec.-009.-2.-04 CrossRef
    Choi H, Moin P (1994) Effects of the computational time step on numerical solutions of turbulent flow. J Comput Phys 113(1):1-. doi:10.-006/?jcph.-994.-112 CrossRef MATH
    Doi K, Ueda M, Kawano S (2011) Theoretical model of nanoparticle detection mechanism in microchannel with gating probe electrodes. J Comput Sci Technol 5(2):78-8. doi:10.-299/?jcst.-.-8 CrossRef
    Dusenbery DB (2009) Living at micro scale: the unexpected physics of being small. Harvard University Press, Cambridge
    Evans BA, Shields AR, Carroll RL, Washburn S, Falvo MR, Superfine R (2007) Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett 7(5):1428-434. doi:10.-021/?nl070190c CrossRef
    Fahrni F, Prins MWJ, van Ijzendoorn LJ (2009) Micro-fluidic actuation using magnetic artificial cilia. Lab Chip 9(23):3413-421. doi:10.-039/?B908578E CrossRef
    Gauger EM, Downton MT, Stark H (2009) Fluid transport at low Reynolds number with magnetically actuated artificial cilia. Eur Phys J E 28(2):231-42. doi:10.-140/?epje/?i2008-10388-1 CrossRef
    Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids (1958-988) 8(12):2182-189. doi:10.-063/-.-761178 CrossRef MATH
    Hsieh Y-C, Zahn JD (2007) On-chip microdialysis system with flow-through sensing components. Biosens Bioelectron 22(11):2422-428. doi:10.-016/?j.?bios.-006.-8.-44 CrossRef
    Hussong J, Schorr N, Belardi J, Prucker O, Ruhe J, Westerweel J (2011) Experimental investigation of the flow induced by artificial cilia. Lab Chip 11(12):2017-022. doi:10.-039/?C0LC00722F CrossRef
    Kato T, Kawano S, Nakahashi K, Yambe T, S-i Nitta, Hashimoto H (2003) Computational flow visualization in vibrating flow pump type artificial heart by unstructured grid. Artif Organs 27(1):41-8. doi:10.-046/?j.-525-1594.-003.-7191.?x CrossRef
    Kawano S, Yamakami J, Kamijo K, Hashimoto H, Yambe T, S-i Nitta (2001) Computational design of vibration pumping device for artificial heart. J Press Vessel Technol 123(4):525-29. doi:10.-115/-.-388009 CrossRef
    Kawano S, Isoyama T, Kobayashi S, Arai H, Takiura K, Saito I, Chinzei T, Abe Y, Yambe T, Nitta S, Imachi K, Hashimoto H (2003) Miniature vibrating flow blood pump using a cross-slider mechanism for external shunt catheter. Artif Organs 27(1):73-7. doi:10.-046/?j.-525-1594.-003.-7186.?x CrossRef
    Khaderi SN, Craus CB, Hussong J, Schorr N, Belardi J, Westerweel J, Prucker O, Ruhe J, den Toonder JMJ, Onck PR (2011a) Magnetically-actuated artificial cilia for microfluidic propulsion. Lab Chip 11(12):2002-010. doi:10.-039/?C0LC00411A CrossRef
    Khaderi SN, den Toonder JMJ, Onck PR (2011b) Microfluidic propulsion by the metachronal beating of magnetic artificial cilia: a numerical analysis. J Fluid Mech 688:44-5. doi:10.-017/?jfm.-011.-55 CrossRef MATH
    Khaderi S, Hussong J, Westerweel J, Toonder Jd, Onck P (2013) Fluid propulsion using magnetically-actuated artificial cilia—experiments and simulations. RSC Adv 3(31):12735-2742. doi:10.-039/?C3RA42068J CrossRef
    Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem 1(1-):244-48. doi:10.-016/-925-4005(90)80209-i CrossRef
    Osman O, Shintaku H, Kawano S (2012) Development of micro-vibrating flow pumps using MEMS technologies. Microfluid Nanofluidics 13(5):703-13. doi:10.-007/?s10404-012-0988-5 CrossRef
    Peng S, Zhang M, Niu X, Wen W, Sheng P, Liu Z, Shi J (2008) Magnetically responsive elastic microspheres. Appl Phys Lett 92(1):012108. doi:10.-063/-.-830620 CrossRef
    Perkins T, Smith D, Larson R, Chu S (1995) Stretching of a single tethered polymer in a uniform flow. Science 268(5207):83-7. doi:10.-126/?science.-701345 CrossRef
    Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25(3):220-52. doi:10.-016/-021-9991(77)90100-0 MathSciNet CrossRef MATH
    Shintaku H, Kuwabara T, Kawano S, Suzuki T, Kanno I, Kotera H (2007) Micro cell encapsulation and its hydrogel-beads production using microfluidic device. Microsyst Technol 13(8):951-58. doi:10.-007/?s00542-006-0291-z CrossRef
    Shintaku H, Imamura S, Kawano S (2008) Microbubble formations in MEMS-fabricated rectangular channels: a high-speed observation. Exp Therm Fluid Sci 32(5):1132-140. doi:10.-016/?j.?expthermflusci.-008.-1.-04 CrossRef
    Toonder Jd, Bos F, Broer D, Filippini L, Gillies M, de Goede J, Mol
  • 作者单位:Osman Omran Osman (1) (3)
    Atsushi Shirai (2)
    Satoyuki Kawano (1)

    1. Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
    3. Mechanical Engineering Department, Faculty of Engineering, Assiut University, Assiut, 71515, Egypt
    2. Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
A micro-vibrating flow pump (micro-VFP) drives the fluid by the vibration of an elastic cantilever-like structure in the pump, which is actuated by a sinusoidal magnetic field. In the present study, we clarify the pumping mechanism of the micro-VFP through a numerical simulation. A two-dimensional simulation code based on the immersed boundary method was developed to obtain the flow field in the micro-VFP together with the vibration of the cantilever. The motion of the cantilever, which was imitated by the immersed body, was expressed as an external forcing term of the Navier–Stokes equations. Here, the magnetic force required to actuate the cantilever was calculated based on a two-dimensional magnetic model, and an integral approach was used to calculate the large deflection of the cantilever. The working conditions and length of the cantilever were numerically studied to determine their effects on the pumping performance. It was shown through the numerical simulations that the pumping mechanism could be explained as a result of elongation of the cantilever in the effective stroke induced by the actuating magnetic field. The pumping performance, which was characterized by the volumetric flow rate and the shut-off pressure, was enhanced by increasing the actuation frequency of the cantilever as has been found in previous experiments. It was also found that the cantilever has an optimum length to give the maximum flow rate. The mechanism was explained with respect to the kinetic energy transferred to the fluid by the vibrating cantilever and the choking level, which is determined by the clearance between the ceiling of the microchannel and the tip of the cantilever. Keywords Micro-VFP Numerical Immersed boundary method Micropump Flow rate Pumping head

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700