Effect of non-equilibrium condensation on lift divergence Mach number at transonic speeds
详细信息    查看全文
  • 作者:Heung Kyun Jeon ; Seung Min Choi…
  • 关键词:Angle of attack ; Lift divergence Mach number ; Moist air ; Non ; equilibrium condensation ; Shock stall ; Transonic speeds ; Supersonic bubble ; TVD scheme
  • 刊名:Journal of Mechanical Science and Technology
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:29
  • 期:7
  • 页码:2883-2888
  • 全文大小:1,324 KB
  • 参考文献:[1]S. B. Kwon and H. J. Ahn, Supersonic moist air flow with condensation in a wavy wall channel, KSME International Journal, 15 4 2001 492-99.
    [2]S. B. Kwon, S. J. Lee, S. Y. Shin and S. H. Kim, A study on the flow with non-equilibrium condensation in a minimum length nozzle, JMST, 23 6 2010 1736-742.
    [3]S. C. Baek, S. B. Kwon, H. D. Kim, T. Setoguchi and S. Matsuo, Study of moderately under-expanded moist air jets, AIAA, 44 7 2006 1624-627.View Article
    [4]P. P. Wegener, Gas dynamics of expansion flows with condensation and homogeneous nucleation of water vaper, Acta Mechanica, 21 1975 165-13.View Article
    [5]R. A. Orina and B. E. Lundquist, Emendations to nucleation theory and homogeneous nucleation of water from the vapor, J. Chem. Phys., 38 9 1963 2082-089.View Article
    [6]P. G. Hill, Condensation of water vapour during supersonic expansion in nozzles, J. Fluid Mech., 25 3 1966 593-20.View Article
    [7]A. H. Shapiro, The dynamics and thermodynamics of compressible fluid flow, Vol. I, Ronald Press Co., New York, USA (1953) 384-87.
    [8]J. Frenkel, Kinetic theory of liquids, Dover Pub. Inc, New York, USA (1946) 415.
    [9]J. W. V. Orden and S. Jeschonnek, Energy-weighted sum rules, y-scaling and duality, The European Physical Journal A, 17 3 2003 391-95.View Article
    [10]S. C. Baek, S. B. Kwon and H. D. Kim, Passive Prandtl-Meyer expansion flow with homogeneous condensation, KSME International Journal, 18 3 2004 407-18.
    [11]U. C. Goldberg, Towards a point-wise turbulence model for wall-bounded and free shear flows, J. Fluids Eng., 116 1 1994 72-6.View Article
    [12]H. C. Yee, A class of high-resolution explicit and implicit shock capturing methods, NASA TM-89464 (1989).
    [13]Y. A. Cengel and J. M. Cimbala, Fluid Mechanics, 2nd ed., Mcgrawhill, New York, USA (2010) 356.
    [14]A. Dadone, Computation of transonic steady flows using a modified lamada formulation, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 26 1989 122-37.View Article
    [15]S. M. Choi, J. S. Kim, Y. D. Kwon and S. B. Kwon, The effect of non-equilibrium condensation on the coefficient of force with the angle of attack in the transonic airfoil flow of NACA0012, JMST, 27 6 2013 1671-676.
    [16]A. H. Shapiro, The dynamics and thermodynamics of compressible fluid flow, Vol. I, Ronald Press Co., New York, USA (1953) 379-84.
    [17]A. H. Shapiro, The dynamics and thermodynamics of compressible fluid flow, Vol. I, Ronald Press Co., New York, USA (1953) 866.
  • 作者单位:Heung Kyun Jeon (1)
    Seung Min Choi (2)
    Young Doo Kwon (3)
    Soon Bum Kwon (3)

    1. Fire Safety Management Dept., Daegu Health College, 15, Yeongsong-ro, Buk-gu, Daegu, 702-722, Korea
    2. Gyeongbuk Institute for Advancement of Eco-Friendly Auto Parts Technology, 27, Sampoong-ro, Gyeongsan, 712-210, Korea
    3. School of Mechanical Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 702-701, Korea
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Structural Mechanics
    Control Engineering
    Industrial and Production Engineering
  • 出版者:The Korean Society of Mechanical Engineers
  • ISSN:1976-3824
文摘
In the present paper, the effects of non-equilibrium condensation on the lift divergence Mach number with the angle of attack in a transonic 2-D moist air flow of NACA0012 are investigated using a numerical analysis with a total variation diminishing scheme. In the case of T 0 = 298 K and α = 3°, the lift divergence Mach number M ld decreases with increasing Ф 0 up to 40%, whereas beyond Ф 0 = 40%, the lift divergence Mach number is nearly constant at M ld = 0.75. On the other hand, for the case of α = 6°, M ld increases with increasing Ф 0 up to 47%, and then M ld begins to decrease with an increase in Ф 0. Because of the attenuating effect of non-equilibrium condensation on the shock stall, for the case of α = 3°, C L generally decreases with an increase in Ф 0, whereas for M?= 0.85, which is appreciably larger than the lift divergence Mach number, C L increases with an increase in Ф 0. In the case of M?= 0.85, regardless of Ф 0, it is shown that the location of the maximum Mach number at the upper wall side is nearly constant at x/c = 0.4. It is found that the Mach number for the minimum C L decreases with an increase in Ф 0.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700