Transglutaminase 2 as a biomarker of osteoarthritis: an update
详细信息    查看全文
  • 作者:Umberto Tarantino (1)
    Amedeo Ferlosio (2)
    Gaetano Arcuri (3)
    Luigi Giusto Spagnoli (2)
    Augusto Orlandi (2)
  • 关键词:Osteoarthritis ; Transglutaminase 2 ; Joint tissue ; Transforming growth factor ; beta
  • 刊名:Amino Acids
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:44
  • 期:1
  • 页码:199-207
  • 全文大小:456KB
  • 参考文献:1. Aeschlimann D, Thomazy V (2000) Protein crosslinking in assembly and remodelling of extracellular matrices: the role of transglutaminases. Connect Tissue Res 41:1-7 CrossRef
    2. Aeschlimann D, Wetterwald A, Fleisch H, Paulsson M (1993) Expression of tissue transglutaminase in skeletal tissues correlates with events of terminal differentiation of chondrocytes. J Cell Biol 120:1461-470 CrossRef
    3. Aeschlimann D, Kaupp O, Paulsson M (1995) Transglutaminase-catalyzed matrix cross-linking in differentiating cartilage: identification of osteonectin as a major glutaminyl substrate. J Cell Biol 129:881-92 CrossRef
    4. Aeschlimann D, Mosher D, Paulsson M (1996) Tissue transglutaminase and factor XIII in cartilage and bone remodeling. Semin Thromb Hemost 22:437-43 CrossRef
    5. Alini M, Kofsky Y, Wu W, Pidoux I, Poole AR (1996) In serum-free culture thyroid hormones can induce full expression of chondrocyte hypertrophy leading to matrix calcification. J Bone Miner Res 11:105-13 CrossRef
    6. Attur MG, Patel IR, Patel RN, Abramson SB, Amin AR (1998) Autocrine production of IL-1 beta by human osteoarthritis-affected cartilage and differential regulation of endogenous nitric oxide, IL-6, prostaglandin E2, and IL-8. Proc Assoc Am Physicians 110:65-2
    7. Bakker EN, Buus CL, Spaan JA, Perree J, Ganga A, Rolf TM, Sorop O, Bramsen LH, Mulvany MJ, Vanbavel E (2005) Small artery remodeling depends on tissue-type transglutaminase. Circ Res 96:119-26 CrossRef
    8. Ballestar E, Abad C, Franco L (1996) Core histones are glutaminyl substrates for tissue transglutaminase. J Biol Chem 271:18817-8824 CrossRef
    9. Bauer DC, Hunter DJ, Abramson SB, Attur M, Corr M, Felson D, Heineg?rd D, Jordan JM, Kepler TB, Lane NE, Saxne T, Tyree B, Kraus VB, Osteoarthritis Biomarkers Network (2006) Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthr Cartil 14:723-27 CrossRef
    10. Beninati S, Senger DR, Cordella-Miele E, Mukherjee AB, Chackalaparampil I, Shanmugam V, Singh K, Mukherjee BB (1994) Osteopontin: its transglutaminase-catalyzed posttranslational modifications and cross-linking to fibronectin. J Biochem 115:675-82
    11. Bini A, Itoh Y, Kudryk BJ, Nagase H (1996) Degradation of crosslinked fibrin by matrix metalloproteinase 3 (stromelysin 1): hydrolysis of the gamma Gly 404-Ala 405 peptide bond. Biochemistry 35:13056-3063 CrossRef
    12. Blaney Davidson EN, van der Kraan PM, van den Berg WB (2007) TGF-beta and osteoarthritis. Osteoarthr Cartil 15:597-04 CrossRef
    13. Borge L, Demignot S, Adolphe M (1996) Type II transglutaminase expression in rabbit articular chondrocytes in culture: relation with cell differentiation, cell growth, cell adhesion and cell apoptosis. Biochim Biophys Acta 1312:117-24 CrossRef
    14. Cecil DL, Terkeltaub R (2008) Transamidation by transglutaminase 2 transforms S100A11 calgranulin into a procatabolic cytokine for chondrocytes. J Immunol 180:8378-385
    15. Chen JS, Mehta K (1999) Tissue transglutaminase: an enzyme with a split personality. Int J Biochem Cell Biol 31:817-36 CrossRef
    16. Collighan RJ, Griffin M (2009) Transglutaminase 2 cross-linking of matrix proteins: biological significance and medical applications. Amino Acids 36:659-70 CrossRef
    17. Cummings M (1996) Apoptosis of epithelial cells in vivo involves tissue transglutaminase upregulation. J Pathol 179:288-93 CrossRef
    18. De Laurenzi V, Melino G (2001) Gene disruption of tissue transglutaminase. Mol Cell Biol 21:148-55 CrossRef
    19. Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R (1995) Toward a molecular understanding of skeletal development. Cell 80:371-78 CrossRef
    20. Eyre DR (2004) Collagens and cartilage matrix homeostasis. Clin Orthop Rel Res 427:S118–S122 CrossRef
    21. Facchiano A, Facchiano F (2009) Transglutaminases and their substrates in biology and human diseases: 50?years of growing. Amino Acids 36:599-14 CrossRef
    22. Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 27:534-39 CrossRef
    23. Fésüs L, Szondy Z (2005) Transglutaminase 2 in the balance of cell death and survival. FEBS Lett 579:3297-302 CrossRef
    24. Fesus L, Madi A, Balajthy Z, Nemes Z, Szondy Z (1996) Transglutaminase induction by various cell death and apoptosis pathways. Experientia (Basel) 52:942-49 CrossRef
    25. Garvican ER, Vaughan-Thomas A, Innes JF, Clegg PD (2010) Biomarkers of cartilage turnover. Part 1: markers of collagen degradation and synthesis. Vet J 185:36-2 CrossRef
    26. Gerstenfeld LC, Shapiro FD (1996) Expression of bone-specific genes by hypertrophic chondrocytes: implication of the complex functions of the hypertrophic chondrocyte during endochondral bone development. J Cell Biochem 62:1- CrossRef
    27. Goldenberg DL, Cohen AS (1978) Synovial membrane histopathology in the differential diagnosis of rheumatoid arthritis, gout, pseudogout, systemic lupus erythematosus, infectious arthritis and degenerative joint disease. Medicine (Baltimore) 57:239-52
    28. Goldring MB (2000) The role of the chondrocyte in osteoarthritis. Arthr Rheum 43:1916-926 CrossRef
    29. Goldring MB, Goldring SR (2010) Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 1192:230-37
    30. Gray ML, Burstein D, Kim YJ, Maroudas A (2008) 2007 Elizabeth Winston Lanier Award Winner. Magnetic resonance imaging of cartilage glycosaminoglycan: basic principles, imaging technique, and clinical applications. J Orthop Res 26:281-91
    31. Greenberg CS, Birckbichler PJ, Rice RH (1991) Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J 5:3071-077
    32. Hang J, Zemskov EA, Lorand L, Belkin AM (2005) Identification of a novel recognition sequence for fibronectin within the NH2-terminal beta-sandwich domain of tissue transglutaminase. J Biol Chem 280:23675-3683 CrossRef
    33. Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millán JL (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164:1199-209
    34. Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373:793-03 CrossRef
    35. Heinkel D, Gohr CM, Uzuki M, Rosenthal AK (2004) Transglutaminase contributes to CPPD crystal formation in osteoarthritis. Front Biosci 19:3257-261 CrossRef
    36. Ientile R, Caccamo D, Griffin M (2007) Tissue transglutaminase and the stress response. Amino Acids 33:385-94 CrossRef
    37. Ishikawa K, Masuda I, Ohira T, Yokoyama M (1989) A histological study of calcium pyrophosphate dihydrate crystal-deposition disease. J Bone Jt Surg Am 71:875-86
    38. Janiak A, Zemskov EA, Belkin AM (2006) Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src-p190RhoGAP signaling pathway. Mol Biol Cell 17:1606-619 CrossRef
    39. Janssens K, ten Dijke P, Janssens S, Van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26:743-74 CrossRef
    40. Johnson KA, Terkeltaub RA (2005) External GTP-bound transglutaminase 2 is a molecular switch for chondrocyte hypertrophic differentiation and calcification. J Biol Chem 280:15004-5012 CrossRef
    41. Johnson K, Hashimoto S, Lotz M, Pritzker K, Terkeltaub R (2001) Interleukin-1 induces pro-mineralizing activity of cartilage tissue transglutaminase and factor XIIIa. Am J Pathol 159:149-63 CrossRef
    42. Johnson KA, van Etten D, Nanda N, Graham RM, Terkeltaub RA (2003) Distinct transglutaminase 2-independent and transglutaminase 2-dependent pathways mediate articular chondrocyte hypertrophy. J Biol Chem 278:18824-8832 CrossRef
    43. Johnson K, Svensson CI, Etten DV, Ghosh SS, Murphy AN, Powell HC, Terkeltaub R (2004) Mediation of spontaneous knee osteoarthritis by progressive chondrocyte ATP depletion in Hartley guinea pigs. Arthr Rheum 50:1216-225 CrossRef
    44. Johnson KA, Rose DM, Terkeltaub RA (2008) Factor XIIIA mobilizes transglutaminase 2 to induce chondrocyte hypertrophic differentiation. J Cell Sci 121:2256-264 CrossRef
    45. Kaartinen MT, El-Maadawy S, Rasanen NH, McKee MD (2002) Tissue transglutaminase and its substrates in bone. J Bone Miner Res 17:2161-173 CrossRef
    46. Kamekura S, Kawasaki Y, Hoshi K, Shimoaka T, Chikuda H, Maruyama Z, Komori T, Sato S, Takeda S, Karsenty G, Nakamura K, Chung UI, Kawaguchi H (2006) Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthr Rheum 54:2462-470 CrossRef
    47. Katoh S, Nakagawa N, Yano Y, Satoh K, Kohno H, Ohkubo Y, Suzuki T, Kitani K (1996) Hepatocyte growth factor induces transglutaminase activity that negatively regulates the growth signal in primary cultured hepatocytes. Exp Cell Res 222:255-61 CrossRef
    48. Kim DS, Park KS, Jeong KC, Lee BI, Lee CH, Kim SY (2009) Glucosamine is an effective chemo-sensitizer via transglutaminase 2 inhibition. Cancer Lett 273:243-49 CrossRef
    49. Krane SM (2001) Petulant cellular acts: destroying the ECM rather than creating it. J Clin Invest 107:31-2 CrossRef
    50. Lohmander LS, Eyre DR (2005) From biomarker to surrogate outcome to osteoarthritis—what are the challenges? J Rheumatol 32:1142-143
    51. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Natl Rev Mol Cell Biol 4:140-56 CrossRef
    52. McCarthy GM (1999) Crystal-induced inflammation and cartilage degradation. Curr Rheumatol Rep 1:101-06 CrossRef
    53. Merz D, Liu R, Johnson K, Terkeltaub R (2003) IL-8/CXCL8 and growth-related oncogeneα/CXCL1induce chondrocyte hypertrophic differentiation. Immunology 171:4406-415
    54. Mishra S, Murphy LJ (2004) Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 279:23863-3868 CrossRef
    55. Mosher DF, Proctor RA (1980) Binding and factor XIIIa-mediated cross-linking of a 27?kilodalton fragment of fibronectin to / Staphylococcus aureus. Science 209:927-29 CrossRef
    56. Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K, Im MJ, Graham RM (1994) Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 264:1593-596 CrossRef
    57. Nemes Z Jr, Adány R, Balázs M, Boross P, Fésüs L (1997) Identification of cytoplasmic actin as an abundant glutaminyl substrate for tissue transglutaminase in HL-60 and U937 cells undergoing apoptosis. J Biol Chem 272:20577-0583 CrossRef
    58. Nunes I, Gleizes PE, Metz CN, Rifkin DB (1997) Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol 136:1151-163 CrossRef
    59. Nurminskaya M, Kaartinen MT (2006) Transglutaminases in mineralized tissues. Front Biosci 11:1591-606 CrossRef
    60. Nurminskaya M, Linsenmayer TF (1996) Identification and characterization of up-regulated genes during chondrocyte hypertrophy. Dev Dyn 206:260-71 CrossRef
    61. Nurminskaya M, Magee C, Nurminsky D, Linsenmayer TF (1998) Plasma transglutaminase in hypertrophic chondrocytes: expression and cell-specific intracellular activation produce cell death and externalization. J Cell Biol 142:1135-144 CrossRef
    62. Nurminskaya M, Magee C, Faverman L, Linsenmayer TF (2003) Chondrocyte-derived transglutaminase promotes maturation of preosteoblasts in periosteal bone. Dev Biol 263:139-52 CrossRef
    63. Orlandi A, Oliva F, Taurisano G, Candi E, Di Lascio A, Melino G, Spagnoli LG, Tarantino U (2009) Transglutaminase-2 differently regulates cartilage destruction and osteophyte formation in a surgical model of osteoarthritis. Amino Acids 36:755-63 CrossRef
    64. Petersson IF, Jacobsson LT (2002) Osteoarthritis of the peripheral joints. Best Pract Res Clin Rheumatol 16:741-60 CrossRef
    65. Poole AR (1996) Pathologic manifestations of joint disease in the athletic horse. In: McIllwraith CW, Trotter GW (eds) Joint disease in the horse. WB Saunders Co, Philadelphia, pp 87-04
    66. Poole AR (2003) Biochemical/immunochemical biomarkers of osteoarthritis: utility for prediction of incident or progressive osteoarthritis. Rheum Dis Clin North Am 29:803-18 CrossRef
    67. Poole AR, Matsui Y, Hinek A, Lee ER (1989) Cartilage macromolecules and the calcification of cartilage matrix. Anat Rec 224:167-79 CrossRef
    68. Prince CW, Dickie D, Krumdieck CL (1991) Osteopontin, a substrate for transglutaminase and factor XIII activity. Biochem Biophys Res Commun 177:1205-210 CrossRef
    69. Rosenthal AK, Derfus BA, Henry LA (1997) Transglutaminase activity in aging articular chondrocytes and articular cartilage vesicles. Arthr Rheum 40:966-70 CrossRef
    70. Rosenthal AK, Mosesson MW, Gohr CM, Masuda I, Heinkel D, Seibenlist KR (2004) Regulation of transglutaminase activity in articular chondrocytes through thrombin receptor-mediated factor XIII synthesis. Thromb Haemost 91:558-68
    71. Ryan LM, McCarty DJ (1997) Calcium pyrophosphate crystal deposition disease, pseudogout, and articular chondrocalcinosis. In: Koopman W (ed) Arthritis and allied conditions: a textbook of rheumatology, 13th edn. Williams and Wilkins, Baltimore, pp 2103-126
    72. Sanchez C, Deberg MA, Bellahcène A, Castronovo V, Msika P, Delcour JP, Crielaard JM, Henrotin YE (2008) Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthr Rheum 58:442-55 CrossRef
    73. Sarang Z, Tóth B, Balajthy Z, K?r?skényi K, Garabuczi E, Fésüs L, Szondy Z (2009) Some lessons from the tissue transglutaminase knockout mouse. Amino Acids 36:625-31 CrossRef
    74. Sawitzke AD, Shi H, Finco MF, Dunlop DD, Bingham CO 3rd, Harris CL, Singer NG, Bradley JD, Silver D, Jackson CG, Lane NE, Oddis CV, Wolfe F, Lisse J, Furst DE, Reda DJ, Moskowitz RW, Williams HJ, Clegg DO (2008) The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: a report from the glucosamine/chondroitin arthritis intervention trial. Arthr Rheum 58:3183-191 CrossRef
    75. Scharstuhl A, Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB (2002) Inhibition of endogenous TGF-beta during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol 169:507-14
    76. Soder S, Hakimiyan A, Rueger DC, Kuettner KE, Aigner T, Chubinskaya S (2005) Antisense inhibition of osteogenic protein 1 disturbs human articular cartilage integrity. Arthr Rheum 52:468-78 B.T CrossRef
    77. Summey BT Jr, Graff RD, Lai TS, Greenberg CS, Lee GM (2002) Tissue transglutaminase localization and activity regulation in the extracellular matrix of articular cartilage. J Orthop Res 20:76-2 CrossRef
    78. Takeuchi Y, Ohashi H, Birckbichler PJ, Ikejima T (1998) Nuclear translocation of tissue type transglutaminase during sphingosine-induced cell death: a novel aspect of the enzyme with DNA hydrolytic activity. Z Naturforsch C 53:352-58
    79. Tanaka K, Yokosaki Y, Higashikawa F, Saito Y, Eboshida A, Ochi M (2007) The integrin alpha5beta1 regulates chondrocyte hypertrophic differentiation induced by GTP-bound transglutaminase 2. Matrix Biol 26:409-18 CrossRef
    80. Tarantino U, Oliva F, Taurisano G, Orlandi A, Pietroni V, Candi E, Melino G, Maffulli N (2009) FXIIIA and TGF-beta over-expression produces normal musculo-skeletal phenotype in TG2??mice. Amino Acids 36:679-84 CrossRef
    81. Telci D, Wang Z, Li X, Verderio EA, Humphries MJ, Baccarini M, Basaga H, Griffin M (2008) Fibronectin-tissue transglutaminase matrix rescues RGD-impaired cell adhesion through syndecan-4 and beta1 integrin co-signaling. J Biol Chem 283:20937-0947 CrossRef
    82. Terkeltaub RA (2002) What does cartilage calcification tell us about osteoarthritis? J Rheumatol 29:411-15
    83. Thacher SM (1989) Purification of keratinocyte transglutaminase and its expression during squamous differentiation. J Invest Dermatol 92:578-84
    84. Todhunter RJ (1996) Anatomy and physiology of synovial joints. In: McIllwraith CW, Trotter GW (eds) Joint disease in the horse. WB Saunders Co, Philadelphia, pp 1-8
    85. Ueki S, Takagi J, Saito Y (1996) Dual functions of transglutaminase in novel cell adhesion. J Cell Sci 109:2727-735
    86. Verderio EA, Griffin TS, Johnson M (2005) Transglutaminases in wound healing and inflammation. Prog Exp Tumor Res 38:89-14 CrossRef
    87. Vignon E, Arlot M, Hartmann D, Moyen B, Ville G (1983) Hypertrophic repair of articular cartilage in experimental osteoarthrosis. Ann Rheum Dis 42:82-8 CrossRef
    88. von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G, Gluckert K, St?ss H (1992) Type X collagen synthesis in human osteoarthritic cartilage, Indication of chondrocyte hypertrophy. Arthr Rheum 35:806-11 CrossRef
    89. Zemmyo M, Meharra EJ, Kühn K, Creighton-Achermann L, Lotz M (2003) Accelerated, aging-dependent development of osteoarthritis in alpha1 integrin-deficient mice. Arthr Rheum 48:2873-880 CrossRef
    90. Zhu Y, Tassi L, Lane W, Mendelsohn ME (1994) Specific binding of the transglutaminase, platelet factor XIII, to HSP27. J Biol Chem 269:22379-2384
  • 作者单位:Umberto Tarantino (1)
    Amedeo Ferlosio (2)
    Gaetano Arcuri (3)
    Luigi Giusto Spagnoli (2)
    Augusto Orlandi (2)

    1. Orthopaedics and Traumatology, University of Rome “Tor Vergata- Viale Oxford 81, 00133, Rome, Italy
    2. Anatomy Pathology, Department of Biopathology and Image Diagnostics, School of Medicine, University of Rome “Tor Vergata- Via Montpellier, 00133, Rome, Italy
    3. Experimental Medicine and Biochemical Sciences, Tor Vergata University of Rome, Via Montpellier, Rome, Italy
  • ISSN:1438-2199
文摘
Osteoarthritis is a progressive joint disease characterized by cartilage degradation and bone remodelling. Under physiologic conditions, articular cartilage displays a stable chondrocyte phenotype, whereas in osteoarthritis a chondrocyte hypertrophy develops near the sites of cartilage surface damage and associates to the pathologic expression of type X collagen. Transglutaminases (TGs) include a family of Ca2+-dependent enzymes that catalyze the formation of γ-glutamyl cross-links. Their substrates include a variety of intracellular and extracellular macromolecular components. TGs are ubiquitously and abundantly expressed and implicated in a variety of physiopathological processes. TGs activity is modulated by inflammatory cytokines. TG2 (also known as tissue transglutaminase) mediates the hypertrophic differentiation of joint chondrocytes and interleukin-1-induced calcification. Histomorphometrical and biomolecular investigations document increased TG2 expression in human and experimental osteoarthritis. Consequently, the level of TG2 expression may represent an adjuvant additional marker to monitor tissue remodelling occurring in osteoarthritic joint tissue. Experimental induction of osteoarthritis in TG2 knockout mice is followed from reduced cartilage destruction and increased osteophyte formation compared to wild-type mice, suggesting a different influence on joint bone and cartilage remodelling. The capacity of transamidation by TG2 to regulate activation of latent TGF-β seems to have a potential impact on the regulation of inflammatory response in osteoarthritic tissues. Additional studies are needed to define TG2-regulated pathways that are differently modulated in osteoblasts and chondrocytes during osteoarthritis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700