Hormone resistance and neuroendocrine differentiation due to accumulation of genetic lesions during clonal evolution of prostate cancer
详细信息    查看全文
  • 作者:D. S. Mikhaylenko ; G. D. Efremov ; A. V. Sivkov ; D. V. Zaletaev
  • 关键词:oncogene ; somatic mutation ; prostate cancer ; clonal evolution ; hormone ; refractory tumor ; neuroendocrine differentiation ; targeted therapy
  • 刊名:Molecular Biology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:50
  • 期:1
  • 页码:28-36
  • 全文大小:276 KB
  • 参考文献:1.Greaves M., Maley C.C. 2012. Clonal evolution in cancer. Nature. 481 (7381), 306–313.CrossRef PubMed PubMedCentral
    2.Jiang Y., Redmond D., Nie K., et al. 2014. Deep sequencing reveals clonal evolution patterns and mutation events associated with relapse in B-cell lymphomas. Genome Biol. 15, 432.PubMed PubMedCentral
    3.Prandi D., Baca S.C., Romanel A., et al. 2014. Unraveling the clonal hierarchy of somatic genomic aberration. Genome Biol. 15, 439.CrossRef PubMed PubMedCentral
    4.Cheng X., Chen H. 2014. Tumor heterogeneity and resistance to EGFR-targeted therapy in advanced in nonsmall cell lung cancer: challenges and perspectives. OncoTargets Ther. 7, 1689–1704.CrossRef
    5.Kaprin A.D., Starinskii V.V., Petrova G.V. 2014). Zlokachestvennye novoobrazovaniya v Rossii v 2012 godu (zabolevaemost’ i smertnost’) (Malignant Neoplasms in Russia: Morbility and Mortality, 2012). Moscow: MNIOI im. P.A. Gertsena Minzdrava Rossii.
    6.Mottet N. 2014). Guidelines on Prostate Cancer. Amhem, Netherlands: Eur. Assoc. Urology.
    7.Bonkhoff H., Berges R. 2010. From pathogenesis to prevention of castration resistant prostate cancer. Prostate. 70 (1), 100–112.CrossRef PubMed
    8.Sharifi N. 2013. Mechanisms of androgen receptor activation in castration-resistant prostate cancer. Endocrinology. 154 (11), 4010–4017.CrossRef PubMed PubMedCentral
    9.Ryan C.J., Smith M.R., De Bono J.C., et al. 2013. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368 (2), 138–148.CrossRef PubMed PubMedCentral
    10.Noonan K.L., North S., Bitting R.L., Armstrong A.J., Ellard S.L., Chi K.N. 2013. Clinical activity of abiraterone acetate in patients with metastatic castrationresistant prostate cancer progressing after enzalutamide. Ann. Oncol. 24 (7), 1802–1807.CrossRef PubMed
    11.Golshayan A.R., Antonarakis E.S. 2013. Ensalutamide: An evidence-based review of its use in the treatment of prostate cancer. Core Evid. 8, 27–35.PubMed PubMedCentral
    12.Dutt S.S., Gao A.C. 2009. Molecular mechanisms of castration-resistant prostate cancer progression. Future Oncol. 5 (9), 1403–1413.CrossRef PubMed PubMedCentral
    13.Conteduca V., Aieta M., Amadori D., De Giorgi U. 2014. Neuroendocrine differentiation in prostate cancer: current and emerging therapy strategies. Crit. Rev. Oncol. Hematol. 92 (1), 11–24.CrossRef PubMed
    14.Li Z., Chen C.J., Wang J.K., et al. 2013. Neuroendocrine differentiation of prostate cancer. Asian J. Androl. 15 (3), 328–332.CrossRef PubMed PubMedCentral
    15.Augello M.A., Den R.B., Knudsen K.E. 2014. AR function in promoting metastatic prostate cancer. Cancer Metast. Rev. 33 (2–3), 399–411.CrossRef
    16.Tilki D., Evans C.P. 2014. The changing landscape of advanced and castration resistant prostate cancer: Latest science and revised definitions. Can. J. Urol. Int. Suppl., 7–12.
    17.Gupta E., Guthrie T., Tan W. 2014. Changing paradigms in management of metastatic castration resistant prostate cancer (mCRPC). BMC Urol. 14, 55.CrossRef PubMed PubMedCentral
    18.Sharifi N. 2013. Minireview: Androgen metabolism in castration-resistant prostate cancer. Mol. Endocrinol. 27 (5), 708–714.CrossRef PubMed PubMedCentral
    19.Penning T.M. 2014. Androgen biosynthesis in castration- resistant prostate cancer. Endocrine-Related Cancer. 21, T67–T78.CrossRef PubMed PubMedCentral
    20.Shafi A.A., Yen A.E., Weigel N.L. 2013. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol. Ther. 140, 223–238.CrossRef PubMed
    21.Fankhauser M., Tan Y., Macintyre G., et al. 2014. Canonical androstenedione reduction is the predominant source of signaling androgens in hormone refractory prostate cancer. Clin. Cancer Res. 20 (21), 5547–5557.CrossRef PubMed
    22.Lallous N., Dalal K., Cherkasov A., Rennie P.S. 2013. Targeting alternative sites on the androgen receptor to treat castration-resistant prostate cancer. Int. J. Mol. Sci. 14, 12496–12519.CrossRef PubMed PubMedCentral
    23.Ware K.E., Garcia-Blanco M.A., Armstrong A.J., Dehm S.M. 2014. Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocrine-Related Cancer. 21, T87–T103.CrossRef PubMed PubMedCentral
    24.Liu L.L., Xie N., Sun S., Plymate S., Mostaghel E., Dong X. 2013. Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene. 284, 1–11.
    25.Jin H.J., Kim J., Yu J. 2013. Androgen receptor genomic regulation. Transl. Androl. Urol. 2 (3), 157–177.PubMed
    26.Cao B., Qi Y., Zhang G., et al. 2014. Androgen receptor splice variants activating the full-length receptor in mediating resistance to androgen-directed therapy. Oncotarget. 5 (6), 1646–1656.CrossRef PubMed
    27.Sun F., Chen H.G., Li W., et al. 2014. Androgen receptor splice variant AR3 promotes prostate cancer via modulating expression of autocrine/paracrine factors. J. Biol. Chem. 289 (3), 1529–1539.CrossRef PubMed PubMedCentral
    28.Yu Z., Chen S., Sowalsky A.G., et al. 2014. Rapid induction of androgen receptor splice variants by androgen deprivation in prostate cancer. Clin. Cancer Res. 20 (6), 1590–1600.CrossRef PubMed PubMedCentral
    29.Krause W.C., Shafi A.A., Nakka M., Weigel N.L. 2014. Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells. Int. J. Biochem. Cell Biol. 54, 49–59.CrossRef PubMed PubMedCentral
    30.Thadani-Mulero M., Portella L., Sun S., et al. 2014. Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Clin. Cancer Res. 74 (8), 2270–2282.
    31.Sprenger C.C., Plymate S.R. 2014. The link between androgen receptor splice variants and castration-resistant prostate cancer. Horm. Cancer. 5 (4), 207–217.CrossRef PubMed PubMedCentral
    32.Braun M., Stomper J., Kirsten K., et al. 2013. Landscape of chromosome number changes in prostate cancer progression. World J. Urol. 31 (6), 1489–1495.CrossRef PubMed
    33.Lorente D., De Bono J.S. 2014. Molecular alterations and emerging targets in castration resistant prostate cancer. Eur. J. Cancer. 50 (4), 753–764.CrossRef PubMed
    34.Labbe D.P., Nowak D.G., Deblois G., Lessard L., Giguère V., Trotman L.C., Tremblay M.L. 2013. Prostate cancer genetic-susceptibility locus on chromosome 20q13 is amplified and coupled to androgen receptorregulation in metastatic tumors. Mol. Cancer Res. 12 (2), 184–189.CrossRef PubMed PubMedCentral
    35.Schrecengost R.S., Knudsen K.E. 2013. Molecular pathogenesis and progression of prostate cancer. Semin. Oncol. 40 (3), 244–258.CrossRef PubMed PubMedCentral
    36.Ottman R., Nguyen C., Lorch R., Chakrabarti R. 2014. MicroRNA expressions associated with progression of prostate cancer cells to antiandrogen therapy resistance. Mol. Cancer. 13, 1.CrossRef PubMed PubMedCentral
    37.Corcoran C., Rani S., O’Driscoll L. 2014. miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate. 74 (13), 1320–1334.CrossRef PubMed
    38.Rosa-Ribeiro R., Nishan U., Vidal R.O., et al. 2014. Transcription factors involved in prostate gland adaptation to androgen deprivation. PLoS ONE. 9 (6), e97080.CrossRef
    39.Sung Y.Y., Cheung E. 2014). Androgen receptor co-regulatory networks in castration-resistant prostate cancer. Endocrine-Related Cancer. 21, R1–R11.
    40.Sun J.H., Lee S.A. 2013. Association between CAG repeat polymorphisms and the risk of prostate cancer: A meta-analysis by race, study design and the number of (CAG)n repeat polymorphisms. Int. J. Mol. Med. 32, 1195–1203.PubMed
    41.Mazaris E., Tsiotras A. 2013. Molecular pathways in prostate cancer. Nephrol. Urol. Mon. 5 (3), 792–800.CrossRef
    42.Kiflemariam S., Mignardi M., Ali M.A., Bergh A., Nilsson M., Sjö blom T. 2014. In situ sequencing identifies TMPRSS2-ERG fusion transcripts, somatic point mutations and gene expression levels in prostate cancers. J. Pathol. 234, 253–261.PubMed
    43.Rajan P., Sudbery I.M., Villasevil M.E., et al. 2014. Next-generation sequencing of advanced prostate cancer treated with androgen-deprivation therapy. Eur. Urol. 66 (1), 32–39.CrossRef PubMed PubMedCentral
    44.Sowalsky A.G., Xia Z., Wang L., et al. 2014. Whole transcriptome sequencing reveals extensive unspliced mRNA in metastatic castration-resistant prostate cancer. Mol. Cancer Res. 13 (1), 1–9.CrossRef
    45.Yokoyama N.N., Shao S., Hoang B.H., Mercola D., Zi X. 2014. Wnt signaling in castration-resistant prostate cancer: Implications for therapy. Am. J. Clin. Exp. Urol. 2 (1), 27–44.PubMed PubMedCentral
    46.Kahn B., Collazo J., Kyprianou N. 2014. Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Int. J. Biol. Sci. 10, 588–595.CrossRef PubMed PubMedCentral
    47.Sun Y., Niu J., Huang J. 2009. Neuroendocrine differentiation in prostate cancer. Am. J. Transl. Res. 1 (2), 148–162.PubMed PubMedCentral
    48.Ciarlo M., Benelli R., Barbieri O., Minghelli S., Barboro P., Balbi C., Ferrari N. 2012. Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/ß- catenin signaling in prostate cancer cells. Int. J. Cancer. 131 (3), 582–590.CrossRef PubMed
    49.Frigo D.E., McDonnell D.P. 2008. Differential effects of prostate cancer therapeutics on neuroendocrine transdifferentiation. Mol. Cancer Ther. 7 (3), 659–669.CrossRef PubMed
    50.Apolikhin O.I., Sivkov A.V., Efremov G.D. Rabinovich E.Z., Keshishev N.G., Kovchenko G.A., Prokhorov S.A., Sokov D.G., Nikonova L.M., Krivenko M.P. 2014. Parameters of serum chromogranin A in different prostate diseases. Eksp. Klin. Urol. 1, 25–30.
    51.Pernikova Z., Slabakova E., Fedr R., Šimecková Š., Jaroš J., Suchánková T., Bouchal J., Kharaishvili G., Král M., Kozubík A., Soucek K. 2014. The role of high cell density in the promotion of neuroendocrine transdifferentiation of prostate cancer cells. Mol. Cancer. 13, 113.CrossRef
    52.Beltran H., Rickman D.S., Park K., et al. 2011. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 1 (6), 487–495.CrossRef PubMed PubMedCentral
    53.Beltran H., Tagawa S.T., Park K., et al. 2012. Challenges in recognizing treatment-related neuroendocrine prostate cancer. J. Clin. Oncol. 30 (36), e386.CrossRef
    54.Terry S., Beltran H. 2014. The many faces of neuroendocrine differentiation in prostate cancer progression. Front. Oncol. 4, 60.CrossRef PubMed PubMedCentral
    55.Lipianskaya J., Cohen A., Chen C.J., et al. 2014. Androgen-deprivation therapy-induced aggressive prostate cancer with neuroendocrine differentiation. Asian J. Androl. 16, 541–544.CrossRef PubMed PubMedCentral
    56.Tan H.L., Sood A., Rahimi H.A., et al. 2013. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin. Cancer Res. 20 (4), 890–903.CrossRef PubMed PubMedCentral
    57.Epstein J.I., Amin M.B., Beltran H., et al. 2014. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am. J. Surg. Pathol. 38 (6), 756–767.CrossRef PubMed PubMedCentral
    58.Santoni M., Conti A., Burattini L., et al. 2014. Neuroendocrine differentiation in prostate cancer: Novel morphological insights and future therapeutic perspectives. Biochim. Biophys. Acta. 1846, 630–637.PubMed
    59.Suzman D.L., Antonarakis E.S. 2014. Castration-resistant prostate-cancer: Latest evidence and therapeutic implications. Ther. Adv. Med. Oncol. 6 (4), 167–179.CrossRef PubMed PubMedCentral
    60.Balbas M.D., Evans M.J., Hosfield D.J., et al. 2013. Overcoming mutation-based resistance to antiandrogens with rational drug design. eLife. 2, e00499.CrossRef
    61.Joseph J.D., Lu N., Qian J., et al. 2013. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov. 3 (9), 1020–1029.CrossRef PubMed
    62.Tan M.H., Li J., Xu H.E., Melcher K., Yong E.L. 2015. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sinica. 36 (1), 3–23.CrossRef
    63.Stein M.N., Patel N., Bershadskiy A., Sokoloff A., Singer E.A. 2014. Androgen synthesis inhibitors in the treatment of castration-resistant prostate cancer. Asian J. Androl. 16, 387–400.CrossRef PubMed PubMedCentral
    64.Chang K.H., Ercole C.E., Sharifi N. 2014. Androgen metabolism in prostate cancer: From molecular mechanisms to clinical consequence. Br. J. Cancer. 111, 1249–1254.CrossRef PubMed PubMedCentral
    65.Eisermann K., Wang D., Jing Y., Pascal L.E., Wang Z. 2013. Androgen receptor gene mutation, rearrangement, polymorphism. Transl. Androl. Urol. 2 (3), 137–147.PubMed PubMedCentral
    66.Sharad S., Ravindranath L., Haffner M.C., et al. 2014. Methylation of the PMEPA1 gene, a negative regulator of the androgen receptorin prostate cancer. Epigenetics. 9 (6), 918–927.CrossRef PubMed PubMedCentral
    67.Barbieri C.E., Baca S.C., Lawrence M.S., et al. 2012. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689.CrossRef PubMed PubMedCentral
    68.Geng C., He B., Xu L., Barbieri C.E., et al. 2013. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc. Natl. Acad. Sci. U. S. A. 110, 6997–7002.CrossRef PubMed PubMedCentral
  • 作者单位:D. S. Mikhaylenko (1) (2)
    G. D. Efremov (1)
    A. V. Sivkov (1)
    D. V. Zaletaev (2) (3)

    1. Lopatkin Institute of Urology and Interventional Radiology, National Medical Radiological Research Center, Ministry of Health, Moscow, 105425, Russia
    2. Research Centre for Medical Genetics, Moscow, 115478, Russia
    3. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Life Sciences
    Biochemistry
    Human Genetics
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3245
文摘
Progression of malignant tumors is largely due to clonal evolution of the primary tumor, clones acquiring different sets of molecular genetic lesions. Lesions can confer a selective advantage in proliferation rate or metastasis on the tumor cell population, especially if developing resistance to anticancer therapy. Prostate cancer (PCa) provides an illustrative example of clinically significant clonal evolution. The review considers the genetic alterations that occur in primary PCa and the mechanism whereby hormone-refractory PCa develops on hormone therapy, including mutations and alternative splicing of the androgen receptor gene (AR) and intratumoral androgen synthesis. Certain molecular genetic lesions determine resistance to new generation inhibitors (AR mutations that block the antagonist effect or allow other hormones to activate the receptor) or lead to neuroendocrine differentiation (repression of the AR signaling pathway, TP53 mutations, and amplification of the AURKA or MYCN oncogene). Multistep therapy based on the data about somatic mutations associated with progression and metastasis of the primary tumor can be expected to significantly improve the survival of patients with advanced PCa in the nearest future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700