RNA-seq analysis identifies an intricate regulatory network controlling cluster root development in white lupin
详细信息    查看全文
  • 作者:David Secco (33)
    Huixia Shou (34) (35)
    James Whelan (35) (36)
    Oliver Berkowitz (33) (37)

    33. Australian Research Council Centre of Excellence in Plant Energy Biology
    ; University of Western Australia ; Crawley ; WA ; 6009 ; Australia
    34. State Key Laboratory of Plant Physiology and Biochemistry
    ; College of Life Sciences ; Zhejiang University ; Hangzhou ; 310058 ; China
    35. Joint Research Laboratory in Genomics and Nutriomics
    ; College of Life Sciences ; Zhejiang University ; Hangzhou ; 310058 ; China
    36. Department of Botany
    ; School of Life Science ; La Trobe University ; Bundoora ; Victoria ; 3086 ; Australia
    37. School of Plant Biology
    ; University of Western Australia ; Crawley ; WA ; 6009 ; Australia
  • 关键词:Cluster root ; White lupin ; Root development ; Phosphate ; RNA ; seq ; de novo transcriptome
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:2,812 KB
  • 参考文献:1. Gerke, J (1992) Phosphate, aluminum and iron in the soil solution of 3 different soils in relation to varying concentrations of citric acid. Z Pflanz Bodenkunde 155: pp. 339-343 417" target="_blank" title="It opens in new window">CrossRef
    2. Scholz, RW, Wellmer, FW (2013) Approaching a dynamic view on the availability of mineral resources: what we may learn from the case of phosphorus?. Global Environ Change-Human and Policy Dimensions 23: pp. 11-27 CrossRef
    3. Chiou, TJ, Lin, SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62: pp. 185-206 46/annurev-arplant-042110-103849" target="_blank" title="It opens in new window">CrossRef
    4. Essigmann, B, Guler, S, Narang, RA, Linke, D, Benning, C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 95: pp. 1950-1955 4.1950" target="_blank" title="It opens in new window">CrossRef
    5. Secco, D, Wang, C, Arpat, BA, Wang, Z, Poirier, Y, Tyerman, SD, Wu, P, Shou, H, Whelan, J (2012) The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. New Phytol 193: pp. 842-851 469-8137.2011.04002.x" target="_blank" title="It opens in new window">CrossRef
    6. Bari, R, Datt Pant, B, Stitt, M, Scheible, WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141: pp. 988-999 4/pp.106.079707" target="_blank" title="It opens in new window">CrossRef
    7. Aung, K, Lin, SI, Wu, CC, Huang, YT, Su, CL, Chiou, TJ (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141: pp. 1000-1011 4/pp.106.078063" target="_blank" title="It opens in new window">CrossRef
    8. Liu, TY, Huang, TK, Tseng, CY, Lai, YS, Lin, SI, Lin, WY, Chen, JW, Chiou, TJ (2012) PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell 24: pp. 2168-2183 CrossRef
    9. Huang, TK, Han, CL, Lin, SI, Chen, YJ, Tsai, YC, Chen, YR, Chen, JW, Lin, WY, Chen, PM, Liu, TY, Chen, YS, Sun, CM, Chiou, TJ (2013) Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in arabidopsis roots. Plant Cell 25: pp. 4044-4066 CrossRef
    10. Peret, B, Clement, M, Nussaume, L, Desnos, T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16: pp. 442-450 CrossRef
    11. Lambers, H, Shane, MW, Cramer, MD, Pearse, SJ, Veneklaas, EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98: pp. 693-713 4" target="_blank" title="It opens in new window">CrossRef
    12. Neumann, G, Martinoia, E (2002) Cluster roots鈥揳n underground adaptation for survival in extreme environments. Trends Plant Sci 7: pp. 162-167 41-0" target="_blank" title="It opens in new window">CrossRef
    13. Cheng, L, Bucciarelli, B, Shen, J, Allan, D, Vance, CP (2011) Update on lupin cluster roots: update on white lupin cluster root acclimation to phosphorus deficiency. Plant Physiol 156: pp. 1025-1032 4/pp.111.175174" target="_blank" title="It opens in new window">CrossRef
    14. Shane, MW, De Vos, M, De Roock, S, Lambers, H (2003) Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system. Plant Cell Environ 26: pp. 265-273 46/j.1365-3040.2003.00957.x" target="_blank" title="It opens in new window">CrossRef
    15. Shu, LZ, Shen, JB, Rengel, Z, Tang, CX, Zhang, FS (2007) Cluster root formation by Lupinus albus is modified by stratified application of phosphorus in a split-root system. J Plant Nutr 30: pp. 271-288 4160601118075" target="_blank" title="It opens in new window">CrossRef
    16. Watt, M, Evans, JR (1999) Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120: pp. 705-716 4/pp.120.3.705" target="_blank" title="It opens in new window">CrossRef
    17. Lavenus, J, Goh, T, Roberts, I, Guyomarc鈥檋, S, Lucas, M, De Smet, I, Fukaki, H, Beeckman, T, Bennett, M, Laplaze, L (2013) Lateral root development in arabidopsis: fifty shades of auxin. Trends Plant Sci 18: pp. 450-458 4.006" target="_blank" title="It opens in new window">CrossRef
    18. Lopez-Bucio, J, Hernandez-Abreu, E, Sanchez-Calderon, L, Nieto-Jacobo, MF, Simpson, J, Herrera-Estrella, L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the arabidopsis root system. Plant Physiol 129: pp. 244-256 4/pp.010934" target="_blank" title="It opens in new window">CrossRef
    19. Perez-Torres, CA, Lopez-Bucio, J, Cruz-Ramirez, A, Ibarra-Laclette, E, Dharmasiri, S, Estelle, M, Herrera-Estrella, L (2008) Phosphate availability alters lateral root development in arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20: pp. 3258-3272 CrossRef
    20. Nacry, P, Canivenc, G, Muller, B, Azmi, A, Van Onckelen, H, Rossignol, M, Doumas, P (2005) A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in arabidopsis. Plant Physiol 138: pp. 2061-2074 4/pp.105.060061" target="_blank" title="It opens in new window">CrossRef
    21. Laplaze, L, Benkova, E, Casimiro, I, Maes, L, Vanneste, S, Swarup, R, Weijers, D, Calvo, V, Parizot, B, Herrera-Rodriguez, MB, Offringa, R, Graham, N, Doumas, P, Friml, J, Bogusz, D, Beeckman, T, Bennett, M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19: pp. 3889-3900 CrossRef
    22. Bielach, A, Podlesakova, K, Marhavy, P, Duclercq, J, Cuesta, C, Muller, B, Grunewald, W, Tarkowski, P, Benkova, E (2012) Spatiotemporal regulation of lateral root organogenesis in arabidopsis by cytokinin. Plant Cell 24: pp. 3967-3981 44" target="_blank" title="It opens in new window">CrossRef
    23. Dello Ioio, R, Galinha, C, Fletcher, AG, Grigg, SP, Molnar, A, Willemsen, V, Scheres, B, Sabatini, S, Baulcombe, D, Maini, PK, Tsiantis, M (2012) A PHABULOSA/cytokinin feedback loop controls root growth in arabidopsis. Curr Biol 22: pp. 1699-1704 CrossRef
    24. Gilbert, GA, Knight, JD, Vance, CP, Allan, DL (2000) Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate. Ann Bot 85: pp. 921-928 CrossRef
    25. Meng, ZB, You, XD, Suo, D, Chen, YL, Tang, C, Yang, JL, Zheng, SJ (2013) Root-derived auxin contributes to the phosphorus-deficiency-induced cluster-root formation in white lupin (Lupinus albus). Physiol Plant 148: pp. 481-489 4.2012.01715.x" target="_blank" title="It opens in new window">CrossRef
    26. O鈥橰ourke, JA, Yang, SS, Miller, SS, Bucciarelli, B, Liu, J, Rydeen, A, Bozsoki, Z, Uhde-Stone, C, Tu, ZJ, Allan, D, Gronwald, JW, Vance, CP (2013) An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161: pp. 705-724 4/pp.112.209254" target="_blank" title="It opens in new window">CrossRef
    27. Neumann, G, Massonneau, A, Langlade, N, Dinkelaker, B, Hengeler, C, Romheld, V, Martinoia, E (2000) Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.). Ann Bot 85: pp. 909-919 CrossRef
    28. Schulz, MH, Zerbino, DR, Vingron, M, Birney, E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28: pp. 1086-1092 4" target="_blank" title="It opens in new window">CrossRef
    29. Thimm, O, Blasing, O, Gibon, Y, Nagel, A, Meyer, S, Kruger, P, Selbig, J, Muller, LA, Rhee, SY, Stitt, M (2004) mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37: pp. 914-939 4.02016.x" target="_blank" title="It opens in new window">CrossRef
    30. Juszczuk, I, Malus脿, E, Rychter, AM (2001) Oxidative stress during phosphate deficiency in roots of bean plants (Phaseolus vulgaris L.). J Plant Physiol 158: pp. 1299-1305 41" target="_blank" title="It opens in new window">CrossRef
    31. Torabi, S, Wissuwa, M, Heidari, M, Naghavi, MR, Gilany, K, Hajirezaei, MR, Omidi, M, Yazdi-Samadi, B, Ismail, AM, Salekdeh, GH (2009) A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics 9: pp. 159-170 CrossRef
    32. Tsukagoshi, H, Busch, W, Benfey, PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143: pp. 606-616 CrossRef
    33. Chang, L, Ramireddy, E, Schmulling, T (2013) Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes. J Exp Bot 64: pp. 5021-5033 CrossRef
    34. Franco-Zorrilla, JM, Martin, AC, Leyva, A, Paz-Ares, J (2005) Interaction between phosphate-starvation, sugar, and cytokinin signaling in arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol 138: pp. 847-857 4/pp.105.060517" target="_blank" title="It opens in new window">CrossRef
    35. Zhu, YY, Zeng, HQ, Dong, CX, Yin, XM, Shen, QR, Yang, ZM (2010) microRNA expression profiles associated with phosphorus deficiency in white lupin (Lupinus albus L.). Plant Sci 178: pp. 23-29 CrossRef
    36. Hsieh, LC, Lin, SI, Shih, AC, Chen, JW, Lin, WY, Tseng, CY, Li, WH, Chiou, TJ (2009) Uncovering small RNA-mediated responses to phosphate-deficiency in arabidopsis by deep sequencing. Plant Physiol 151: pp. 2120-2132 4/pp.109.147280" target="_blank" title="It opens in new window">CrossRef
    37. Misson, J, Raghothama, KG, Jain, A, Jouhet, J, Block, MA, Bligny, R, Ortet, P, Creff, A, Somerville, S, Rolland, N, Doumas, P, Nacry, P, Herrerra-Estrella, L, Nussaume, L, Thibaud, MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci U S A 102: pp. 11934-11939 CrossRef
    38. Morcuende, R, Bari, R, Gibon, Y, Zheng, W, Pant, BD, Blasing, O, Usadel, B, Czechowski, T, Udvardi, MK, Stitt, M, Scheible, WR (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell and Environ 30: pp. 85-112 40.2006.01608.x" target="_blank" title="It opens in new window">CrossRef
    39. Wu, P, Ma, L, Hou, X, Wang, M, Wu, Y, Liu, F, Deng, XW (2003) Phosphate starvation triggers distinct alterations of genome expression in arabidopsis roots and leaves. Plant Physiol 132: pp. 1260-1271 4/pp.103.021022" target="_blank" title="It opens in new window">CrossRef
    40. Zheng, L, Huang, F, Narsai, R, Wu, J, Giraud, E, He, F, Cheng, L, Wang, F, Wu, P, Whelan, J, Shou, H (2009) Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol 151: pp. 262-274 4/pp.109.141051" target="_blank" title="It opens in new window">CrossRef
    41. Wang, S, Zhang, S, Sun, C, Xu, Y, Chen, Y, Yu, C, Qian, Q, Jiang, DA, Qi, Y (2014) Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). New Phytol 201: pp. 91-103 499" target="_blank" title="It opens in new window">CrossRef
    42. Secco, D, Jabnoune, M, Walker, H, Shou, H, Wu, P, Poirier, Y, Whelan, J (2013) Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery. Plant Cell 25: pp. 4285-4304 CrossRef
    43. Massonneau, A, Langlade, N, Leon, S, Smutny, J, Vogt, E, Neumann, G, Martinoia, E (2001) Metabolic changes associated with cluster root development in white lupin (Lupinus albus L.): relationship between organic acid excretion, sucrose metabolism and energy status. Planta 213: pp. 534-542 4250100529" target="_blank" title="It opens in new window">CrossRef
    44. Linkohr, BI, Williamson, LC, Fitter, AH, Leyser, HM (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of arabidopsis. Plant J 29: pp. 751-760 46/j.1365-313X.2002.01251.x" target="_blank" title="It opens in new window">CrossRef
    45. Rouached, H, Secco, D, Arpat, B, Poirier, Y (2011) The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC Plant Biol 11: pp. 19 471-2229-11-19" target="_blank" title="It opens in new window">CrossRef
    46. Kant, S, Peng, M, Rothstein, SJ (2011) Genetic regulation by NLA and MicroRNA827 for maintaining nitrate-dependent phosphate homeostasis in arabidopsis. PLoS Genet 7: pp. e1002021 CrossRef
    47. Ticconi, CA, Lucero, RD, Sakhonwasee, S, Adamson, AW, Creff, A, Nussaume, L, Desnos, T, Abel, S (2009) ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proc Natl Acad Sci U S A 106: pp. 14174-14179 CrossRef
    48. Bournier, M, Tissot, N, Mari, S, Boucherez, J, Lacombe, E, Briat, J-F, Gaymard, F (2013) Arabidopsis ferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. J Biol Chem 288: pp. 22670-22680 4/jbc.M113.482281" target="_blank" title="It opens in new window">CrossRef
    49. Ward, JT, Lahner, B, Yakubova, E, Salt, DE, Raghothama, KG (2008) The effect of iron on the primary root elongation of arabidopsis during phosphate deficiency. Plant Physiol 147: pp. 1181-1191 4/pp.108.118562" target="_blank" title="It opens in new window">CrossRef
    50. Coudert, Y, Perin, C, Courtois, B, Khong, NG, Gantet, P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15: pp. 219-226 CrossRef
    51. Petricka, JJ, Winter, CM, Benfey, PN (2012) Control of arabidopsis root development. Annu Rev Plant Biol 63: pp. 563-590 46/annurev-arplant-042811-105501" target="_blank" title="It opens in new window">CrossRef
    52. Blilou, I, Xu, J, Wildwater, M, Willemsen, V, Paponov, I, Friml, J, Heidstra, R, Aida, M, Palme, K, Scheres, B (2005) The PIN auxin efflux facilitator network controls growth and patterning in arabidopsis roots. Nature 433: pp. 39-44 4" target="_blank" title="It opens in new window">CrossRef
    53. Grieneisen, VA, Xu, J, Maree, AF, Hogeweg, P, Scheres, B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449: pp. 1008-1013 CrossRef
    54. Swarup, K, Benkova, E, Swarup, R, Casimiro, I, Peret, B, Yang, Y, Parry, G, Nielsen, E, De Smet, I, Vanneste, S, Levesque, MP, Carrier, D, James, N, Calvo, V, Ljung, K, Kramer, E, Roberts, R, Graham, N, Marillonnet, S, Patel, K, Jones, JD, Taylor, CG, Schachtman, DP, May, S, Sandberg, G, Benfey, P, Friml, J, Kerr, I, Beeckman, T, Laplaze, L (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10: pp. 946-954 4" target="_blank" title="It opens in new window">CrossRef
    55. Vanneste, S, Friml, J (2009) Auxin: a trigger for change in plant development. Cell 136: pp. 1005-1016 CrossRef
    56. Zhou, W, Wei, L, Xu, J, Zhai, Q, Jiang, H, Chen, R, Chen, Q, Sun, J, Chu, J, Zhu, L, Liu, CM, Li, C (2010) Arabidopsis Tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating postembryonic maintenance of the root stem cell niche. Plant Cell 22: pp. 3692-3709 CrossRef
    57. Mashiguchi, K, Tanaka, K, Sakai, T, Sugawara, S, Kawaide, H, Natsume, M, Hanada, A, Yaeno, T, Shirasu, K, Yao, H, McSteen, P, Zhao, Y, Hayashi, K, Kamiya, Y, Kasahara, H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci U S A 108: pp. 18512-18517 434108" target="_blank" title="It opens in new window">CrossRef
    58. Qin, G, Gu, H, Zhao, Y, Ma, Z, Shi, G, Yang, Y, Pichersky, E, Chen, H, Liu, M, Chen, Z, Qu, LJ (2005) An indole-3-acetic acid carboxyl methyltransferase regulates arabidopsis leaf development. Plant Cell 17: pp. 2693-2704 4959" target="_blank" title="It opens in new window">CrossRef
    59. Ranocha, P, Denance, N, Vanholme, R, Freydier, A, Martinez, Y, Hoffmann, L, Kohler, L, Pouzet, C, Renou, JP, Sundberg, B, Boerjan, W, Goffner, D (2010) Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers. Plant J 63: pp. 469-483 4256.x" target="_blank" title="It opens in new window">CrossRef
    60. Wan, YL, Jasik, J, Wang, L, Hao, HQ, Volkmann, D, Menzel, D, Mancuso, S, Baluska, F, Lin, JX (2012) The signal transducer NPH3 integrates the Phototropin1 photosensor with PIN2-based polar auxin transport in arabidopsis root phototropism. Plant Cell 24: pp. 551-565 4284" target="_blank" title="It opens in new window">CrossRef
    61. Galinha, C, Hofhuis, H, Luijten, M, Willemsen, V, Blilou, I, Heidstra, R, Scheres, B (2007) PLETHORA proteins as dose-dependent master regulators of arabidopsis root development. Nature 449: pp. 1053-1057 CrossRef
    62. Carlsbecker, A, Lee, JY, Roberts, CJ, Dettmer, J, Lehesranta, S, Zhou, J, Lindgren, O, Moreno-Risueno, MA, Vaten, A, Thitamadee, S, Campilho, A, Sebastian, J, Bowman, JL, Helariutta, Y, Benfey, PN (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465: pp. 316-321 CrossRef
    63. Jang, G, Yi, K, Pires, ND, Menand, B, Dolan, L (2011) RSL genes are sufficient for rhizoid system development in early diverging land plants. Development 138: pp. 2273-2281 42/dev.060582" target="_blank" title="It opens in new window">CrossRef
    64. Karas, B, Amyot, L, Johansen, C, Sato, S, Tabata, S, Kawaguchi, M, Szczyglowski, K (2009) Conservation of lotus and arabidopsis basic helix-loop-helix proteins reveals new players in root hair development. Plant Physiol 151: pp. 1175-1185 4/pp.109.143867" target="_blank" title="It opens in new window">CrossRef
    65. Menand, B, Yi, K, Jouannic, S, Hoffmann, L, Ryan, E, Linstead, P, Schaefer, DG, Dolan, L (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316: pp. 1477-1480 42618" target="_blank" title="It opens in new window">CrossRef
    66. Wang, P, Du, Y, Zhao, X, Miao, Y, Song, CP (2013) The MPK6-ERF6-ROS-responsive cis-acting element7/GCC box complex modulates oxidative gene transcription and the oxidative response in arabidopsis. Plant Physiol 161: pp. 1392-1408 4/pp.112.210724" target="_blank" title="It opens in new window">CrossRef
    67. Shin, R, Berg, RH, Schachtman, DP (2005) Reactive oxygen species and root hairs in arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46: pp. 1350-1357 45" target="_blank" title="It opens in new window">CrossRef
    68. Khan, GA, Declerck, M, Sorin, C, Hartmann, C, Crespi, M, Lelandais-Briere, C (2011) MicroRNAs as regulators of root development and architecture. Plant Mol Biol 77: pp. 47-58 CrossRef
    69. Pant, BD, Buhtz, A, Kehr, J, Scheible, WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53: pp. 731-738 CrossRef
    70. Lin, SI, Chiang, SF, Lin, WY, Chen, JW, Tseng, CY, Wu, PC, Chiou, TJ (2008) Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147: pp. 732-746 4/pp.108.116269" target="_blank" title="It opens in new window">CrossRef
    71. Laubinger, S, Zeller, G, Henz, SR, Buechel, S, Sachsenberg, T, Wang, J-W, R盲tsch, G, Weigel, D (2010) Global effects of the small RNA biogenesis machinery on the arabidopsis thaliana transcriptome. Proc Natl Acad Sci U S A 107: pp. 17466-17473 CrossRef
    72. Reyes, JL, Chua, N-H (2007) ABA induction of miR159 controls transcript levels of two MYB factors during arabidopsis seed germination. Plant J 49: pp. 592-606 CrossRef
    73. Florez-Sarasa, I, Lambers, H, Wang, X, Finnegan, PM, Ribas-Carbo, M (2014) The alternative respiratory pathway mediates carboxylate synthesis in white lupin cluster roots under phosphorus deprivation. Plant, Cell Environ 37: pp. 922-928 CrossRef
    74. Li, W, Godzik, A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: pp. 1658-1659 CrossRef
    75. Conesa, A, Gotz, S, Garcia-Gomez, JM, Terol, J, Talon, M, Robles, M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: pp. 3674-3676 CrossRef
    76. Kent, WJ (2002) BLAT鈥搕he BLAST-like alignment tool. Genome Res 12: pp. 656-664 CrossRef
    77. Langmead, B, Trapnell, C, Pop, M, Salzberg, SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: pp. R25 CrossRef
    78. Trapnell, C, Williams, BA, Pertea, G, Mortazavi, A, Kwan, G, van Baren, MJ, Salzberg, SL, Wold, BJ, Pachter, L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: pp. 511-515 CrossRef
    79. Maere, S, Heymans, K, Kuiper, M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21: pp. 3448-3449 CrossRef
    80. Gruber, AR, Lorenz, R, Bernhart, SH, Neubock, R, Hofacker, IL (2008) The vienna RNA websuite. Nucleic Acids Res 36: pp. W70-74 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Highly adapted plant species are able to alter their root architecture to improve nutrient uptake and thrive in environments with limited nutrient supply. Cluster roots (CRs) are specialised structures of dense lateral roots formed by several plant species for the effective mining of nutrient rich soil patches through a combination of increased surface area and exudation of carboxylates. White lupin is becoming a model-species allowing for the discovery of gene networks involved in CR development. A greater understanding of the underlying molecular mechanisms driving these developmental processes is important for the generation of smarter plants for a world with diminishing resources to improve food security. Results RNA-seq analyses for three developmental stages of the CR formed under phosphorus-limited conditions and two of non-cluster roots have been performed for white lupin. In total 133,045,174 high-quality paired-end reads were used for a de novo assembly of the root transcriptome and merged with LAGI01 (Lupinus albus gene index) to generate an improved LAGI02 with 65,097 functionally annotated contigs. This was followed by comparative gene expression analysis. We show marked differences in the transcriptional response across the various cluster root stages to adjust to phosphate limitation by increasing uptake capacity and adjusting metabolic pathways. Several transcription factors such as PLT, SCR, PHB, PHV or AUX/IAA with a known role in the control of meristem activity and developmental processes show an increased expression in the tip of the CR. Genes involved in hormonal responses (PIN, LAX, YUC) and cell cycle control (CYCA/B, CDK) are also differentially expressed. In addition, we identify primary transcripts of miRNAs with established function in the root meristem. Conclusions Our gene expression analysis shows an intricate network of transcription factors and plant hormones controlling CR initiation and formation. In addition, functional differences between the different CR developmental stages in the acclimation to phosphorus starvation have been identified.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700