Next generation sequencing and de novo transcriptomics to study gene evolution
详细信息    查看全文
  • 作者:Achala S Jayasena (1)
    David Secco (1)
    Kalia Bernath-Levin (1)
    Oliver Berkowitz (1) (3)
    James Whelan (2)
    Joshua S Mylne (1)

    1. The University of Western Australia
    ; School of Chemistry and Biochemistry & ARC Centre of Excellence in Plant Energy Biology ; 35 Stirling Highway ; Crawley ; Perth ; 6009 ; Australia
    3. The University of Western Australia
    ; School of Plant Biology ; 35 Stirling Highway ; Crawley ; Perth ; 6009 ; Australia
    2. La Trobe University
    ; Department of Botany ; School of Life Sciences & ARC Centre of Excellence in Plant Energy Biology ; AgriBio ; the Centre for AgriBioscience ; 5 Ring Road ; Melbourne ; Bundoora Victoria ; 3086 ; Australia
  • 关键词:De novo transcriptomics ; Gene evolution ; PawS1 ; Cyclic peptides
  • 刊名:Plant Methods
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:10
  • 期:1
  • 全文大小:1,600 KB
  • 参考文献:1. Walker, TM, Ip, CLC, Harrell, RH, Evans, JT, Kapatai, G, Dedicoat, MJ, Eyre, DW, Wilson, DJ, Hawkey, PM, Crook, DW, Parkhill, J, Harris, D, Walker, AS, Bowden, R, Monk, P, Smith, EG, Peto, TEA (2013) Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 13: pp. 137-146 473-3099(12)70277-3" target="_blank" title="It opens in new window">CrossRef
    2. Oono, Y, Kobayashi, F, Kawahara, Y, Yazawa, T, Handa, H, Itoh, T, Matsumoto, T (2013) Characterisation of the wheat (triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes: gene expression in Pi-stressed wheat. BMC Genomics 14: pp. 1-14 471-2164-14-77" target="_blank" title="It opens in new window">CrossRef
    3. Qin, J, Li, R, Raes, J, Arumugam, M, Burgdorf, KS, Manichanh, C, Nielsen, T, Pons, N, Levenez, F, Yamada, T, Mende, DR, Li, J, Xu, J, Li, S, Li, D, Cao, J, Wang, B, Liang, H, Zheng, H, Xie, Y, Tap, J, Lepage, P, Bertalan, M, Batto, J, Hansen, T, Le Paslier, D, Linneberg, A, Nielsen, HB, Pelletier, E, Renault, P (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: pp. 59-65 CrossRef
    4. Cruickshanks, HA, McBryan, T, Nelson, DM, VanderKraats, ND, Shah, PP, van Tuyn, J, Singh Rai, T, Brock, C, Donahue, G, Dunican, DS, Drotar, ME, Meehan, RR, Edwards, JR, Berger, SL, Adams, PD (2013) Senescent cells harbour features of the cancer epigenome. Nat Cell Biol 15: pp. 1495-1506 CrossRef
    5. Darmanis, S, Nong, RY, V盲nelid, J, Siegbahn, A, Ericsson, O, Fredriksson, S, B盲cklin, C, Gut, M, Heath, S, Gut, IG, Heath, S, Gut, IG, Wallentin, L, Gustafsson, MG, Kamali-Moghaddam, M, Landegren, U (2011) ProteinSeq: High-performance proteomic analyses by proximity ligation and next generation sequencing. PLoS One 6: pp. e25583 CrossRef
    6. Navin, N, Kendall, J, Troge, J, Andrews, P, Rodgers, L, McIndoo, J, Cook, K, Stepansky, A, Levy, D, Esposito, D, Muthuswamy, L, Krasnitz, A, McCombie, WR, Hicks, J, Wigler, M (2011) Tumour evolution inferred by single-cell sequencing. Nature 472: pp. 90-94 CrossRef
    7. Xiao, M, Zhang, Y, Chen, X, Lee, E, Barber, CJS, Chakrabarty, R, Desgagn茅-Penix, I, Haslam, TM, Kim, Y, Liu, E, MacNevin, G, Masada-Atsumi, S, Reed, DW, Stout, JM, Zerbe, P, Zhang, Y, Bohlmann, J, Covello, PS, De Luca, V, Page, JE, Ro, DK, Martin, VJ, Facchini, PJ, Sensen, CW (2013) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 166: pp. 122-134 4.004" target="_blank" title="It opens in new window">CrossRef
    8. Novaes, E, Drost, DR, Farmerie, WG, Pappas, GJ, Grattapaglia, D, Sederoff, RR, Kirst, M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9: pp. 1-14 471-2164-9-312" target="_blank" title="It opens in new window">CrossRef
    9. Zhang, J, Liang, S, Duan, J, Wang, J, Chen, S, Cheng, Z, Zhang, Q, Liang, X, Li, Y (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.). BMC Genomics 13: pp. 90 471-2164-13-90" target="_blank" title="It opens in new window">CrossRef
    10. Wan, L, Han, J, Sang, M, Li, A, Wu, H, Yin, S, Zhang, C (2012) De novo transcriptomic analysis of an oleaginous microalga: pathway description and gene discovery for production of next-generation biofuels. PLoS One 7: pp. e35142 42" target="_blank" title="It opens in new window">CrossRef
    11. Franssen, S, Shrestha, R, Brautigam, A, Bornberg-Bauer, E, Weber, A (2011) Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics 12: pp. 227 471-2164-12-227" target="_blank" title="It opens in new window">CrossRef
    12. Quail, M, Smith, M, Coupland, P, Otto, T, Harris, S, Connor, T, Bertoni, A, Swerdlow, H, Gu, Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13: pp. 341 471-2164-13-341" target="_blank" title="It opens in new window">CrossRef
    13. Grabherr, MG, Haas, BJ, Yassour, M, Levin, JZ, Thompson, DA, Amit, I, Adiconis, X, Fan, L, Raychowdhury, R, Zeng, Q, Chen, Z, Mauceli, E, Hacohen, N, Gnirke, G, Rhind, N, di Palma, F, Birren, BW, Nusbaum, C, Lindblad-Toh, K, Friedman, N, Regev, A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech 29: pp. 644-652 CrossRef
    14. Zerbino, DR, Birney, E (2008) Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: pp. 821-829 4492.107" target="_blank" title="It opens in new window">CrossRef
    15. Huang, X, Madan, A (1999) CAP3: A DNA sequence assembly program. Genome Res 9: pp. 868-877 CrossRef
    16. Pertea, G, Huang, X, Liang, F, Antonescu, V, Sultana, R, Karamycheva, S, Lee, Y, White, J, Cheung, F, Parvizi, B, Tsai, J, Quackenbush, J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19: pp. 651-652 4" target="_blank" title="It opens in new window">CrossRef
    17. Mylne, JS, Colgrave, ML, Daly, NL, Chanson, AH, Elliott, AG, McCallum, EJ, Jones, A, Craik, DJ (2011) Albumins and their processing machinery are hijacked for cyclic peptides in sunflower. Nat Chem Biol 7: pp. 257-259 42" target="_blank" title="It opens in new window">CrossRef
    18. Elliott, AG, Delay, C, Liu, H, Phua, Z, Rosengren, KJ, Benfield, AH, Panero, JL, Colgrave, ML, Jayasena, AS, Dunse, KM, Anderson, MA, Schilling, EE, Ortiz-Barrientos, D, Craik, DJ, Mylne, JS (2014) Evolutionary Origins of a Bioactive Peptide Buried within Preproalbumin. Plant Cell 26: pp. 981-995 4.123620" target="_blank" title="It opens in new window">CrossRef
    19. Kreis, M, Shewry, PR (1989) Unusual features of cereal seed protein structure and evolution. Bioessays 10: pp. 201-207 CrossRef
    20. Luckett, S, Garcia, RS, Barker, JJ, Konarev, AV, Shewry, PR, Clarke, AR, Brady, RL (1999) High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. J Mol Biol 290: pp. 525-533 CrossRef
    21. Rico, M, Bruix, M, Gonz谩lez, C, Monsalve, RI, Rodr铆guez, R (1996) 1H NMR assignment and global fold of napin BnIb, a representative 2S albumin seed protein. Biochemistry 35: pp. 15672-15682 48q" target="_blank" title="It opens in new window">CrossRef
    22. Natali, L, Cossu, R, Barghini, E, Giordani, T, Buti, M, Mascagni, F, Morgante, M, Gill, N, Kane, N, Rieseberg, L, Cavallini, A (2013) The repetitive component of the sunflower genome as shown by different procedures for assembling next generation sequencing reads. BMC Genomics 14: pp. 686 471-2164-14-686" target="_blank" title="It opens in new window">CrossRef
    23. Martin, JA, Wang, Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12: pp. 671-682 CrossRef
    24. Liu, L, Li, Y, Li, S-L, Hu, N, He, Y, Pong, R, Lin, D, Lu, L, Law, M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012: pp. 11
    25. Dorn, KM, Fankhauser, JD, Wyse, DL, Marks, MD (2013) De novo assembly of the pennycress (Thlaspi arvense) transcriptome provides tools for the development of a winter cover crop and biodiesel feedstock. Plant J 75: pp. 1028-1038 CrossRef
    26. Br盲utigam, A, Mullick, T, Schliesky, S, Weber, APM (2011) Critical assessment of assembly strategies for non-model species mRNA-Seq data and application of next-generation sequencing to the comparison of C3 and C4 species. J Exp Bot 62: pp. 3093-3102 CrossRef
    27. Mortazavi, A, Williams, BA, McCue, K, Schaeffer, L, Wold, B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Meth 5: pp. 621-628 CrossRef
    28. Wang, ET, Sandberg, R, Luo, S, Khrebtukova, I, Zhang, L, Mayr, C, Kingsmore, SF, Schroth, GP, Burge, CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456: pp. 470-476 CrossRef
    29. O鈥橬eil, S, Emrich, S (2013) Assessing de novo transcriptome assembly metrics for consistency and utility. BMC Genomics 14: pp. 465 471-2164-14-465" target="_blank" title="It opens in new window">CrossRef
    30. Parra, G, Bradnam, K, Ning, Z, Keane, T, Korf, I (2009) Assessing the gene space in draft genomes. Nucleic Acids Res 37: pp. 289-297 CrossRef
    31. Dure, L, Croudh, M (1981) Developmental biochemistry of cotton seed embryogenesis, and termination: changing messenger ribonucleic and populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20: pp. 4162-4168 CrossRef
    32. Hong-Bo, S, Zong-Suo, L, Ming-An, S (2005) LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surf B Biointerfaces 45: pp. 131-135 CrossRef
    33. Siloto, RMP, Findlay, K, Lopez-Villalobos, A, Yeung, EC, Nykiforuk, CL, Moloney, MM (2006) The accumulation of oleosins determines the size of seed oilbodies in arabidopsis. Plant Cell 18: pp. 1961-1974 41269" target="_blank" title="It opens in new window">CrossRef
    34. Chen, X, Pfeil, JE, Gal, S (2002) The three typical aspartic proteinase genes of Arabidopsis thaliana are differentially expressed. Eur J Biochem 269: pp. 4675-4684 46/j.1432-1033.2002.03168.x" target="_blank" title="It opens in new window">CrossRef
    35. Sim玫es, I, Faro, C (2004) Structure and function of plant aspartic proteinases. Eur J Biochem 271: pp. 2067-2075 432-1033.2004.04136.x" target="_blank" title="It opens in new window">CrossRef
    36. van Loon, LC, Rep, M, Pieterse, CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44: pp. 135-162 46/annurev.phyto.44.070505.143425" target="_blank" title="It opens in new window">CrossRef
    37. Richau, KH, Kaschani, F, Verdoes, M, Pansuriya, TC, Niessen, S, St眉ber, K, Colby, T, Overkleeft, HS, Bogyo, M, Van der Hoorn, RAL (2012) Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. Plant Physiol 158: pp. 1583-1599 4/pp.112.194001" target="_blank" title="It opens in new window">CrossRef
    38. Hardie, DG (1999) Plant protein serine/threonine kinases: classification and functions. Annu Rev Plant Physiol Plant Mol Biol 50: pp. 97-131 46/annurev.arplant.50.1.97" target="_blank" title="It opens in new window">CrossRef
    39. Shewry, PR, Napier, JA, Tatham, AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7: pp. 945-956 45" target="_blank" title="It opens in new window">CrossRef
    40. Haznedaroglu, BZ, Reeves, D, Rismani-Yazdi, H, Peccia, J (2012) Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms. BMC Bioinformatics 13: pp. 170 471-2105-13-170" target="_blank" title="It opens in new window">CrossRef
    41. Croucher, P, Brewer, M, Winchell, C, Oxford, G, Gillespie, R (2013) De novo characterization of the gene-rich transcriptomes of two color-polymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes. BMC Genomics 14: pp. 862 471-2164-14-862" target="_blank" title="It opens in new window">CrossRef
    42. Wu, C-H, Tsai, M-H, Ho, C-C, Chen, C-Y, Lee, H-S (2013) De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration. BMC Genomics 14: pp. 434 471-2164-14-434" target="_blank" title="It opens in new window">CrossRef
    43. De Wit, P, Pespeni, MH, Ladner, JT, Barshis, DJ, Seneca, F, Jaris, H, Therkildsen, NO, Morikawa, M, Palumbi, SR (2012) The simple fool鈥檚 gide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis. Mol Ecol Resour 12: pp. 1058-1067 CrossRef
    44. Mylne, JS, Chan, LY, Chanson, AH, Daly, NL, Schaefer, H, Bailey, TL, Nguyencong, P, Cascales, L, Craik, DJ (2012) Cyclic peptides arising by evolutionary parallelism via asparaginyl-endopeptidase-mediated biosynthesis. Plant Cell 24: pp. 2765-2778 CrossRef
    45. Botella, JR, Arteca, JM, Schlagnhaufer, CD, Arteca, RN, Phillips, AT (1992) Identification and characterization of a full-length cDNA encoding for an auxin-induced 1-aminocyclopropane-1-carboxylate synthase from etiolated mung bean hypocotyl segments and expression of its mRNA in response to indole-3-acetic acid. Plant Mol Biol 20: pp. 425-436 40602" target="_blank" title="It opens in new window">CrossRef
  • 刊物主题:Plant Sciences; Biological Techniques;
  • 出版者:BioMed Central
  • ISSN:1746-4811
文摘
Background Studying gene evolution in non-model species by PCR-based approaches is limited to highly conserved genes. The plummeting cost of next generation sequencing enables the application of de novo transcriptomics to any species. Results Here we describe how to apply de novo transcriptomics to pursue the evolution of a single gene of interest. We follow a rapidly evolving seed protein that encodes small, stable peptides. We use software that needs limited bioinformatics background and assemble four de novo seed transcriptomes. To demonstrate the quality of the assemblies, we confirm the predicted genes at the peptide level on one species which has over ten copies of our gene of interest. We explain strategies that favour assembly of low abundance genes, what assembly parameters help capture the maximum number of transcripts, how to develop a suite of control genes to test assembly quality and we compare several sequence depths to optimise cost and data volume. Conclusions De novo transcriptomics is an effective approach for studying gene evolution in species for which genome support is lacking.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700