Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children
详细信息    查看全文
  • 作者:P. Achenbach (1) (2) (3)
    M. Hummel (3)
    L. Thümer (2)
    H. Boerschmann (3)
    D. H?felmann (1) (2)
    A. G. Ziegler (1) (2) (3)
  • 关键词:Islet autoantibody ; Progression ; Susceptibility genes ; Type 1 diabetes
  • 刊名:Diabetologia
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:56
  • 期:7
  • 页码:1615-1622
  • 全文大小:261KB
  • 参考文献:1. Atkinson MA, Eisenbarth GS (2001) Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358:221-29 CrossRef
    2. Achenbach P, Lampasona V, Landherr U et al (2009) Autoantibodies to zinc transporter 8 and SLC30A8 genotype stratify type 1 diabetes risk. Diabetologia 52:1881-888 CrossRef
    3. Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G, EURODIAB Study Group (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989-003 and predicted new cases 2005-0: a multicentre prospective registration study. Lancet 373:2027-033 CrossRef
    4. Hummel M, Bonifacio E, Schmid S, Walter M, Knopff A, Ziegler AG (2004) Brief communication: early appearance of islet autoantibodies predicts childhood type 1 diabetes in offspring of diabetic parents. Ann Intern Med 140:882-86 CrossRef
    5. Steck AK, Johnson K, Barriga KJ et al (2011) Age of islet autoantibody appearance and mean levels of insulin, but not GAD or IA-2 autoantibodies, predict age of diagnosis of type 1 diabetes: diabetes autoimmunity study in the young. Diabetes Care 34:1397-399 CrossRef
    6. Parikka V, Nanto-Salonen K, Saarinen M et al (2012) Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk. Diabetologia 55:1926-936 CrossRef
    7. Ziegler AG, Pflueger M, Winkler C et al (2011) Accelerated progression from islet autoimmunity to diabetes is causing the escalating incidence of type 1 diabetes in young children. J Autoimmun 37:3- CrossRef
    8. Bingley PJ, Christie MR, Bonifacio E et al (1994) Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes 43:1304-310 CrossRef
    9. Verge CF, Gianani R, Kawasaki E et al (1996) Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 45:926-33 CrossRef
    10. Ziegler AG, Hummel M, Schenker M, Bonifacio E (1999) Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes 48:460-68 CrossRef
    11. Puavilai G, Chanprasertyotin S, Sriphrapradaeng A (1999) Diagnostic criteria for diabetes mellitus and other categories of glucose intolerance: 1997 criteria by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (ADA), 1998 WHO consultation criteria, and 1985 WHO criteria. World Health Organization. Diabetes Res Clin Pract 44:21-6 CrossRef
    12. Torn C, Mueller PW, Schlosser M, Bonifacio E, Bingley PJ, Laboratories P (2008) Diabetes Antibody Standardization Program: evaluation of assays for autoantibodies to glutamic acid decarboxylase and islet antigen-2. Diabetologia 51:846-52 CrossRef
    13. Schlosser M, Mueller PW, Torn C, Bonifacio E, Bingley PJ, Laboratories P (2010) Diabetes Antibody Standardization Program: evaluation of assays for insulin autoantibodies. Diabetologia 53:2611-620 CrossRef
    14. Lampasona V, Schlosser M, Mueller PW et al (2011) Diabetes antibody standardization program: first proficiency evaluation of assays for autoantibodies to zinc transporter 8. Clin Chem 57:1693-702 CrossRef
    15. Walter M, Albert E, Conrad M et al (2003) IDDM2/insulin VNTR modifies risk conferred by IDDM1/HLA for development of type 1 diabetes and associated autoimmunity. Diabetologia 46:712-20 CrossRef
    16. Barrett JC, Clayton DG, Concannon P et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41:703-07 CrossRef
    17. Winkler C, Krumsiek J, Lempainen J et al (2012) A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes. Genes Immun 13:549-55 CrossRef
    18. Agresti A, Mehta CR, Patel NR (1990) Exact inference for contingency tables with ordered categories. JASA 85:453-58 CrossRef
    19. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716-23 CrossRef
    20. Sosenko JM, Krischer JP, Palmer JP et al (2008) A risk score for type 1 diabetes derived from autoantibody-positive participants in the Diabetes Prevention Trial-Type 1. Diabetes Care 31:528-33 CrossRef
    21. Bingley PJ (2010) Clinical applications of diabetes antibody testing. J Clin Endocrinol Metab 95:25-3 CrossRef
    22. Kulmala P, Savola K, Petersen JS et al (1998) Prediction of insulin-dependent diabetes mellitus in siblings of children with diabetes. A population-based study. The Childhood Diabetes in Finland Study Group. J Clin Invest 101:327-36 CrossRef
    23. Decochez K, de Leeuw IH, Keymeulen B et al (2002) IA-2 autoantibodies predict impending type I diabetes in siblings of patients. Diabetologia 45:1658-666 CrossRef
    24. Achenbach P, Warncke K, Reiter J et al (2004) Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. Diabetes 53:384-92 CrossRef
    25. Bonifacio E, Bingley PJ, Shattock M et al (1990) Quantification of islet-cell antibodies and prediction of insulin-dependent diabetes. Lancet 335:147-49 CrossRef
    26. Achenbach P, Koczwara K, Knopff A, Naserke H, Ziegler AG, Bonifacio E (2004) Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes. J Clin Invest 114:589-97
    27. Mayr A, Schlosser M, Grober N et al (2007) GAD autoantibody affinity and epitope specificity identify distinct immunization profiles in children at risk for type 1 diabetes. Diabetes 56:1527-533 CrossRef
    28. Krause S, Chmiel R, Bonifacio E et al (2012) IA-2 autoantibody affinity in children at risk for type 1 diabetes. Clin Immunol 145:224-29 CrossRef
    29. Polychronakos C, Li Q (2011) Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet 12:781-92 CrossRef
    30. Todd JA (2010) Etiology of type 1 diabetes. Immunity 32:457-67 CrossRef
    31. Dendrou CA, Plagnol V, Fung E et al (2009) Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat Genet 41:1011-015 CrossRef
    32. Tang Q, Adams JY, Penaranda C et al (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28:687-97 CrossRef
    33. Long SA, Cerosaletti K, Bollyky PL et al (2010) Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4(+)CD25(+) regulatory T cells of type 1 diabetic subjects. Diabetes 59:407-15 CrossRef
    34. Yamanouchi J, Rainbow D, Serra P et al (2007) Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 39:329-37 CrossRef
    35. Sgouroudis E, Albanese A, Piccirillo CA (2008) Impact of protective IL-2 allelic variants on CD4+ Foxp3+ regulatory T cell function in situ and resistance to autoimmune diabetes in NOD mice. J Immunol 181:6283-292
    36. Howson JM, Cooper JD, Smyth DJ et al (2012) Evidence of gene-gene interaction and age-at-diagnosis effects in type 1 diabetes. Diabetes 61:3012-017 CrossRef
    37. Kurreeman FA, Schonkeren JJ, Heijmans BT, Toes RE, Huizinga TW (2004) Transcription of the IL10 gene reveals allele-specific regulation at the mRNA level. Hum Mol Genet 13:1755-762 CrossRef
    38. Smyth DJ, Cooper JD, Bailey R et al (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 38:617-19 CrossRef
    39. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387-89 CrossRef
    40. Smyth DJ, Plagnol V, Walker NM et al (2008) Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 359:2767-777 CrossRef
    41. Vang T, Congia M, Macis MD et al (2005) Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 37:1317-319 CrossRef
    42. Nejentsev S, Howson JM, Walker NM et al (2007) Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 450:887-92 CrossRef
    43. von Herrath M (2009) Diabetes: a virus-gene collaboration. Nature 459:518-19 CrossRef
    44. Smyth DJ, Cooper JD, Howson JM et al (2011) FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes 60:3081-084 CrossRef
    45. MacFarlane AJ, Strom A, Scott FW (2009) Epigenetics: deciphering how environmental factors may modify autoimmune type 1 diabetes. Mamm Genome 20:624-32 CrossRef
  • 作者单位:P. Achenbach (1) (2) (3)
    M. Hummel (3)
    L. Thümer (2)
    H. Boerschmann (3)
    D. H?felmann (1) (2)
    A. G. Ziegler (1) (2) (3)

    1. Institute of Diabetes Research, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
    2. Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universit?t München, Munich, Germany
    3. Forschergruppe Diabetes e.V, Neuherberg, Germany
  • ISSN:1432-0428
文摘
Aims/hypothesis Islet autoantibody-positive children progress to type 1 diabetes at variable rates. In our study, we asked whether characteristic autoantibody and/or gene profiles could be defined for phenotypes showing extreme progression. Methods Autoantibodies to insulin (IAA), GAD (GADA), insulinoma-associated antigen-2 (IA-2A) and zinc transporter 8 (ZnT8A) were measured in follow-up sera, and genotyping for type 1 diabetes susceptibility genes (HLA-DR/HLA-DQ, INS variable number of tandem repeats [VNTR] and single nucleotide polymorphisms at PTPN22, PTPN2, ERBB3, IL2, SH2B3, CTLA4, IFIH1, KIAA0350 [also known as CLEC16A], CD25, IL18RAP, IL10, COBL) was performed on the DNA samples of children born to a parent with type 1 diabetes and prospectively followed from birth for up to 22?years. Results Of the 1,650 children followed, 23 developed multiple autoantibodies and progressed to diabetes within 3?years (rapid progressors), while 24 children developed multiple autoantibodies and remained non-diabetic for more than 10?years from seroconversion (slow progressors). Rapid and slow progressors were similar with respect to HLA-DR/HLA-DQ genotypes, development of IAA, GADA and ZnT8A, and progression to multiple autoantibodies. In contrast, IA-2A development was considerably delayed in the slow progressors. Furthermore, both groups were effectively distinguished by the combined presence or absence of type 1 diabetes susceptibility alleles of non-HLA genes, most notably IL2, CD25, INS VNTR, IL18RAP, IL10, IFIH1 and PTPN22, and discrimination was improved among children carrying high-risk HLA-DR/HLA-DQ genotypes. Conclusions/interpretation Our data suggest that genotypes of non-HLA type 1 diabetes susceptibility genes influence the likelihood or rate of diabetes progression among children with multiple islet autoantibodies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700