Autocrine effect of Zn2+ on the glucose-stimulated insulin secretion
详细信息    查看全文
  • 作者:Kira G. Slepchenko ; Nigel A. Daniels ; Aili Guo ; Yang V. Li
  • 关键词:Insulin ; Zinc ; Beta ; cells ; Autocrine ; Feedback ; Islet
  • 刊名:Endocrine
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:50
  • 期:1
  • 页码:110-122
  • 全文大小:2,654 KB
  • 参考文献:1.Y.V. Li, Zinc and insulin in pancreatic beta-cells. Endocrine 45(2), 178-89 (2014). doi:10.-007/?s12020-013-0032-x CrossRef PubMed
    2.D.A. Scott, A.M. Fisher, The insulin and the zinc content of normal and diabetic pancreas. J. Clin. Investig. 17(6), 725-28 (1938). doi:10.-172/?JCI101000 PubMed Central CrossRef PubMed
    3.A.B. Chausmer, Zinc, insulin and diabetes. J. Am. Coll. Nutr. 17(2), 109-15 (1998)CrossRef PubMed
    4.K. Lemaire, M.A. Ravier, A. Schraenen, J.W. Creemers, R. Van de Plas, M. Granvik, L. Van Lommel, E. Waelkens, F. Chimienti, G.A. Rutter, P. Gilon, P.A. in’t Veld, F.C. Schuit, Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci U S A 106(35), 14872-4877 (2009). doi:10.-073/?pnas.-906587106 PubMed Central CrossRef PubMed
    5.J. Brandao-Neto, C.A. Silva, T. Shuhama, J.A. Silva, L. Oba, Renal handling of zinc in insulin-dependent diabetes mellitus patients. Biometals 14(1), 75-0 (2001)CrossRef PubMed
    6.J.J. Cunningham, A. Fu, P.L. Mearkle, R.G. Brown, Hyperzincuria in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high-dose zinc supplementation. Metabolism 43(12), 1558-562 (1994)CrossRef PubMed
    7.W.B. Kinlaw, A.S. Levine, J.E. Morley, S.E. Silvis, C.J. McClain, Abnormal zinc metabolism in type II diabetes mellitus. Am. J. Med. 75(2), 273-77 (1983). doi:10.-016/-002-9343(83)91205-6 CrossRef PubMed
    8.P. Proks, J.D. Lippiat, Membrane ion channels and diabetes. Curr. Pharm. Des. 12(4), 485-01 (2006)CrossRef PubMed
    9.G.A. Rutter, Think zinc: new roles for zinc in the control of insulin secretion. Islets 2(1), 49-0 (2011). doi:10.-161/?isl.-.-.-0259 CrossRef
    10.M. Foster, S. Samman, Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid. Redox Signal 13(10), 1549-573 (2010). doi:10.-089/?ars.-010.-111 CrossRef PubMed
    11.M.D. Bosco, D.M. Mohanasundaram, C.J. Drogemuller, C.J. Lang, P.D. Zalewski, P.T. Coates, Zinc and zinc transporter regulation in pancreatic islets and the potential role of zinc in islet transplantation. Rev Diabet Stud 7(4), 263-74 (2010). doi:10.-900/?RDS.-010.-.-63 PubMed Central CrossRef PubMed
    12.N. Wijesekara, F. Chimienti, M.B. Wheeler, Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes. Metab. 11(Suppl 4), 202-14 (2009). doi:10.-111/?j.-463-1326.-009.-1110.?x CrossRef PubMed
    13.Y.V. Li, Zinc Overload in Stroke, in Metal Ion in Stroke, ed. by Y.V. Li, J.H. Zhang (Springer Science+Business Media, New York, 2012), pp. 167-89CrossRef
    14.Y.V. Li, C.J. Hough, J.M. Sarvey, Do we need zinc to think? Sci. STKE 182, 19 (2003)
    15.C.J. Frederickson, J.Y. Koh, A.I. Bush, The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6(6), 449-62 (2005). doi:10.-038/?nrn1671 CrossRef PubMed
    16.S.L. Sensi, P. Paoletti, A.I. Bush, I. Sekler, Zinc in the physiology and pathology of the CNS. Nat. Rev. Neurosci. 10(11), 780-91 (2009). doi:10.-038/?nrn2734 CrossRef PubMed
    17.A. Mathie, G.L. Sutton, C.E. Clarke, E.L. Veale, Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol. Ther. 111(3), 567-83 (2006)CrossRef PubMed
    18.D.W. Barnett, D.M. Pressel, S. Misler, Voltage-dependent Na+ and Ca2+ currents in human pancreatic islet beta-cells: evidence for roles in the generation of action potentials and insulin secretion. Pflugers Arch. 431(2), 272-82 (1995)CrossRef PubMed
    19.C.B. Newgard, J.D. McGarry, Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu. Rev. Biochem. 64, 689-19 (1995). doi:10.-146/?annurev.?bi.-4.-70195.-03353 CrossRef PubMed
    20.A. Tarasov, J. Dusonchet, F. Ashcroft, Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53(Suppl 3), S113–S122 (2004)CrossRef PubMed
    21.F.M. Ashcroft, P. Rorsman, G. Trube, Single calcium channel activity in mouse pancreatic beta-cells. Ann. N. Y. Acad. Sci. 560, 410-12 (1989)CrossRef PubMed
    22.I. Findlay, F.M. Ashcroft, R.P. Kelly, P. Rorsman, O.H. Petersen, G. Trube, Calcium currents in insulin-secreting beta-cells. Ann. N. Y. Acad. Sci. 560, 403-09 (1989)CrossRef PubMed
    23.A. Bloc, T. Cens, H. Cruz, Y. Dunant, Zinc-induced changes in ionic currents of clonal rat pancreatic -cells: activation of ATP-sensitive K+ channels. J. Physiol. 529(Pt 3), 723-34 (2000)PubMed Central CrossRef PubMed
    24.R. Ferrer, B. Soria, C.M. Dawson, I. Atwater, E. Rojas, Effects of Zn2+ on glucose-induced electrical activity and insulin release from mouse pancreatic islets. Am. J. Physiol. 246(5 Pt 1), C520–C527 (1984)PubMed
    25.T. Ghafghazi, M.L. McDaniel, P.E. Lacy, Zinc-induced inhibition of insulin secretion from isolated rat islets of Langerhans. Diabetes 30(4), 341-45 (1981)CrossRef PubMed
  • 作者单位:Kira G. Slepchenko (1)
    Nigel A. Daniels (2)
    Aili Guo (2)
    Yang V. Li (1)

    1. Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
    2. Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
  • 刊物主题:Endocrinology; Diabetes; Internal Medicine; Science, general;
  • 出版者:Springer US
  • ISSN:1559-0100
文摘
It is well known that zinc (Zn2+) is required for the process of insulin biosynthesis and the maturation of insulin secretory granules in pancreatic beta (β)-cells, and that changes in Zn2+ levels in the pancreas have been found to be associated with diabetes. Glucose-stimulation causes a rapid co-secretion of Zn2+ and insulin with similar kinetics. However, we do not know whether Zn2+ regulates insulin availability and secretion. Here we investigated the effect of Zn2+ on glucose-stimulated insulin secretion (GSIS) in isolated mouse pancreatic islets. Whereas Zn2+ alone (control) had no effect on the basal secretion of insulin, it significantly inhibited GSIS. The application of CaEDTA, by removing the secreted Zn2+ from the extracellular milieu of the islets, resulted in significantly increased GSIS, suggesting an overall inhibitory role of secreted Zn2+ on GSIS. The inhibitory action of Zn2+ was mostly mediated through the activities of KATP/Ca2+ channels. Furthermore, during brief paired-pulse glucose-stimulated Zn2+ secretion (GSZS), Zn2+ secretion following the second pulse was significantly attenuated, probably by the secreted endogenous Zn2+ after the first pulse. Such an inhibition on Zn2+ secretion following the second pulse was completely reversed by Zn2+ chelation, suggesting a negative feedback mechanism, in which the initial glucose-stimulated Zn2+ release inhibits subsequent Zn2+ secretion, subsequently inhibiting insulin co-secretion as well. Taken together, these data suggest a negative feedback mechanism on GSZS and GSIS by Zn2+ secreted from β-cells, and the co-secreted Zn2+ may act as an autocrine inhibitory modulator. Keywords Insulin Zinc Beta-cells Autocrine Feedback Islet

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700