Tolerance vs. avoidance: two strategies of soybean (Glycine max) seedlings in response to shade in intercropping
详细信息    查看全文
  • 作者:W. Z. Gong ; C. D. Jiang ; Y. S. Wu ; H. H. Chen ; W. Y. Liu ; W. Y. Yang
  • 关键词:biomass partitioning ; gas exchange ; leaf structure ; monocropping ; palisade mesophyll ; stem elongation
  • 刊名:Photosynthetica
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:53
  • 期:2
  • 页码:259-268
  • 全文大小:478 KB
  • 参考文献:Anderson J. M.: Photoregulation of the composition, function, and structure of thylakoid membranes. 鈥?Annu. Rev. Plant Phys. 37: 93鈥?36, 1986.View Article
    Anten N. P., von Wettberg E. J., Pawlowski M. et al.: Interactive effects of spectral shading and mechanical stress on the expression and costs of shade avoidance. 鈥?Am. Nat. 173: 241鈥?55, 2009.View Article PubMed
    Baker N.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. 鈥?Annu. Rev. Plant Biol. 59: 89鈥?13, 2008.View Article PubMed
    Ballar茅 C. L.: Keeping up with the neighbours: Phytochrome sensing and other signalling mechanisms. 鈥?Trends Plant Sci. 4: 97鈥?02, 1999.View Article PubMed
    Bedoussac L., Justes E.: Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat-winter pea intercrop. 鈥?Plant Soil 330: 37鈥?4, 2010.View Article
    Boardman N. K.: Comparative photosynthesis of sun and shade plants. 鈥?Annu. Rev. Plant Phys. 28: 355鈥?77, 1977.View Article
    Casal J. J.: Shade avoidance. 鈥?The Arabidopsis Book 10: e0157, 2012.View Article PubMed Central PubMed
    Dudley S. A., Schmitt J.: Genetic differentiation in morphological responses to simulated foliage shade between populations of Impatiens capensis from open and woodland sites. 鈥?Funct. Ecol. 9: 655鈥?66, 1995.View Article
    Echarte L., Maggiora A. D., Cerrudo D. et al.: Yield response to plant density of maize and sunflower intercropped with soybean. 鈥?Field Crop. Res. 121: 423鈥?29, 2011.View Article
    Evans J. R.: Photosynthesis and nitrogen relationships in leaves of C3 plants. 鈥?Oecologia 78: 9鈥?9, 1989.View Article
    Farquhar G. D., Sharkey T. D.: Stomatal conductance and photosynthesis. 鈥?Annu. Rev. Plant Phys. 33: 317鈥?45, 1982.View Article
    Francis C. A.: Biological efficiencies in multiple-cropping systems. 鈥?Adv. Agron. 42: 1鈥?2, 1989.
    Franklin K. A., Whitelam G. C.: Phytochromes and shadeavoidance responses in plants. 鈥?Ann. Bot.-London 96: 169鈥?75, 2005.View Article
    Fritschi F. B., Ray J. D.: Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. 鈥?Photosynthetica 45: 92鈥?8, 2007.View Article
    Gao Y., Duan A., Qiu X. et al.: Distribution of roots and root length density in a maize/soybean strip intercropping system. 鈥?Agr. Water Manage. 98: 199鈥?12, 2010.View Article
    Gao Y., Duan A., Sun J. et al.: Crop coefficient and water-use efficiency of winter wheat/spring maize strip intercropping. 鈥?Field Crop. Res. 111: 65鈥?3, 2009.View Article
    Ghanbari A., Dahmardeh M., Siahsar B. A. et al.: Effect of maize (Zea mays L.) 鈥?cowpea (Vigna unguiculata L.) intercropping on light distribution, soil temperature and soil moisture in arid environment. 鈥?J. Food Agric. Environ. 8: 102鈥?08, 2010.
    Ghosh P. K., Tripathi A. K., Bandyopadhyay K. K. et al.: Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system. 鈥?Eur. J. Agron. 31: 43鈥?0, 2009.View Article
    Givnish T. J.: Adaptation to sun and shade: a whole-plant perspective. 鈥?Aust. J. Plant. Physiol. 15: 63鈥?2, 1988.View Article
    Gommers C. M., Visser E. J., St Onge K. R. et al.: Shade tolerance: when growing tall is not an option. 鈥?Trends Plant Sci. 18: 65鈥?1, 2013.View Article PubMed
    Keating B. A., Carberry P. S.: Resource capture and use in intercropping: solar radiation. 鈥?Field Crop. Res. 34: 273鈥?01, 1993.View Article
    Kn枚rzer H., Gr枚zinger H., Graeff-H枚nninger S. et al.: Integrating a simple shading algorithm into CERES-wheat and CERES-maize with particular regard to a changing microclimate within a relay-intercropping system. 鈥?Field Crop. Res. 121: 274鈥?85, 2011.View Article
    Lichtenthaler H. K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. 鈥?Method. Enzymol. 148: 350鈥?82, 1987.
    Lithourgidis A. S., Vlachostergios D. N., Dordas C. A. et al.: Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems. 鈥?Eur. J. Agron. 34: 287鈥?94, 2011.View Article
    Makino A.: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. 鈥?Plant Physiol. 155: 125鈥?29, 2011.View Article PubMed Central PubMed
    Mal茅zieux E., Crozat Y., Dupraz C. et al.: Mixing plant species in cropping systems: Concepts, tools and models. A review. 鈥?Agron. Sustain. Dev. 29: 43鈥?2, 2009.View Article
    Manceur A. M., Boland G. J., Thevathasan N. V. et al.: Dry matter partitions and specific leaf weight of soybean change with tree competition in an intercropping system. 鈥?Agroforest. Syst. 76: 295鈥?01, 2009.View Article
    Murchie E. H., Chen Y. Z., Hubbart S. et al.: Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field-grown rice. 鈥?Plant Physiol. 119: 553鈥?64, 1999.View Article PubMed Central PubMed
    Mushagalusa G. N., Ledent J. F., Draye X.: Shoot and root competition in potato/maize intercropping: Effects on growth and yield. 鈥?Environ. Exp. Bot. 64: 180鈥?88, 2008.View Article
    Niinemets 脺.: Components of leaf dry mass per area 鈥?thickness and density 鈥?alter leaf photosynthetic capacity in reverse directions in woody plants. 鈥?New Phytol. 144: 35鈥?7, 1999.View Article
    Niinemets 脺.: Photosynthesis and resource distribution through plant canopies. 鈥?Plant Cell Environ. 30: 1052鈥?071, 2007.View Article PubMed
    Niinemets 脺.: A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. 鈥?Ecol. Res. 25: 693鈥?14, 2010.View Article
    Portsmuth A., Niinemets 脺.: Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance. 鈥?Funct. Ecol. 21: 61鈥?7, 2007.View Article
    S谩nchez-G贸mez D., Valladares F., Zavala, M. A.: Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species. 鈥?Tree Physiol. 26: 1425鈥?433, 2006.View Article PubMed
    Shili-Touzi I., De Tourdonnet S., Launay M. et al.: Does intercropping winter wheat (Triticum aestivum) with red fescue (Festuca rubra) as a cover crop improve agronomic and environmental performance? A modeling approach. 鈥?Field Crop. Res. 116: 218鈥?29, 2010.View Article
    Smith H.: Phytochromes and light signal perception by plants 鈥?an emerging synthesis. 鈥?Nature 407: 585鈥?91, 2000.View Article PubMed
    Terashima I., Hanba Y. T., Tazoe Y. et al.: Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. 鈥?J. Exp. Bot. 57: 343鈥?54, 2006.View Article PubMed
    Terashima I., Hanba Y. T., Tholen D. et al.: Leaf functional anatomy in relation to photosynthesis. 鈥?Plant Physiol. 155: 108鈥?16, 2011.View Article PubMed Central PubMed
    Terashima I., Miyazawa S. I., Hanba Y. T.: Why are sun leaves thicker than shade leaves? 鈥?Consideration based on analyses of CO2 diffusion in the leaf. 鈥?J. Plant Res. 114: 93鈥?05, 2001.View Article
    Valladares F., Gianoli E., Salda帽a A.: Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade? 鈥?Ann. Bot.-London 108: 231鈥?39, 2011.View Article
    Valladares F., Niinemets 脺.: Shade tolerance, a key plant feature of complex nature and consequences. 鈥?Annu. Rev. Ecol. Evol. S. 39: 237鈥?57, 2008.View Article
    Valladares F., Wright S. J., Lasso E. et al.: Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. 鈥?Ecology 81: 1925鈥?936, 2000.View Article
    Vandenbussche F., Pierik R., Millenaar F. F. et al.: Reaching out of the shade. 鈥?Curr. Opin. Plant Biol. 8: 462鈥?68, 2005.View Article PubMed
    Wallace S. U., Bacanamwo M., Palmer J. H. et al.: Yield and yield components of relay-intercropped wheat and soybean. 鈥?Field Crop. Res. 46: 161鈥?68, 1996.View Article
    Willey R. W.: Intercropping: its importance and research needs. I. Competition and yield advantages. 鈥?Field Crop Abstracts 32: 1鈥?0, 1979.
    Ye Z. P.: A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. 鈥?Photosynthetica 45: 637鈥?40, 2007.View Article
    Zhang L., van der Werf W., Bastiaans L. et al.: Light interception and utilization in relay intercrops of wheat and cotton. 鈥?Field Crop. Res. 107: 29鈥?2, 2008.View Article
  • 作者单位:W. Z. Gong (1) (2)
    C. D. Jiang (3)
    Y. S. Wu (1) (2)
    H. H. Chen (1) (2)
    W. Y. Liu (1) (2)
    W. Y. Yang (1) (2)

    1. College of Agronomy, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
    2. Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Wenjiang, 611130, Chengdu, China
    3. Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-9058
文摘
Intercropping is a sustainable agricultural practice used worldwide for highly efficient utilization of resources. However, short crops often grow under the shade of the canopy of tall crops in intercropping systems. Plants evolved two main strategies to deal with shade: avoidance and tolerance. Soybean (Glycine max), a legume crop, is often planted in intercropping. But little is known about a strategy that soybean may employ to deal with shade at seedling stage. Therefore, we determined morphological and physiological traits related to shade tolerance and shade avoidance in seedlings of two varieties. Generally, both varieties showed similar shade tolerance traits, such as increased specific leaf area and chlorophyll (Chl) content, and reduced photosynthetic capacity and the Chl a/b ratio. The light-limiting environment eliminated the benefits of shade tolerance traits for the carbon gain, which led to similar real-time photosynthesis and biomass in intercropping. By contrast, two varieties expressed different changes in shade avoidance traits. The variety Guixia 3 exhibited clear preference of shade avoidance that resulted in a high main stem, hypocotyl elongation, and biomass allocation towards the stem. The variety Gongxuan 1 showed those traits less. We suggested that the genetic variation occurs within soybean, thus the shade avoidance related traits might be important for variety selection for intercropping. Hence, the evaluation of performance should focus on shade avoidance in soybean genotypes in future experiments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700