Silver nanoparticle induced cytotoxicity, oxidative stress, and DNA damage in CHO cells
详细信息    查看全文
  • 作者:Kumud Kant Awasthi (1)
    Anjali Awasthi (2)
    Narender Kumar (2)
    Partha Roy (2)
    Kamlendra Awasthi (3)
    P. J. John (1)
  • 关键词:Ag nanoparticles ; UV–Vis spectroscopy ; TEM ; Cytotoxicity ; DNA damage
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:15
  • 期:9
  • 全文大小:706KB
  • 参考文献:1. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233(3):404-10. doi:10.1016/j.taap.2008.09.015 CrossRef
    2. Ahsan A, Hiniker SM, Davis MA, Lawrence TS, Nyati MK (2009) Role of cell cycle in epidermal growth factor receptor inhibitor-mediated radiosensitization. Cancer Res 69(12):5108-114 CrossRef
    3. Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179(2):93-00. doi:10.1016/j.toxlet.2008.04.009 CrossRef
    4. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279-90. doi:10.1021/nn800596w CrossRef
    5. Awasthi KK, John PJ, Awasthi A, Awasthi K (2013) Multi walled carbon nano tubes induced hepatotoxicity in Swiss albino mice. Micron 44:359-64. doi:10.1016/j.micron.2012.08.008 CrossRef
    6. Bae CH, Nam SH, Park SM (2002) Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. Appl Surf Sci 197-98:628-34 CrossRef
    7. Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F (1999) Mitochondria and cell death. Eur J Biochem 264(3):687-01 CrossRef
    8. Bhakat KK, Mokkapati SK, Boldogh I, Hazra TK, Mitra S (2006) Acetylation of human 8-oxoguanine-DNA glycosylase by p300 and its role in 8-oxoguanine repair in vivo. Mol Cell Biol 26(5):1654-665 CrossRef
    9. Bigall NC, Reitzig M, Naumann W, Simon P, van Pée K-H, Eychmüller A (2008) Fungal templates for noble-metal nanoparticles and their application in catalysis. Angew Chem Int Ed 47(41):7876-879 CrossRef
    10. Brause R, M?ltgen H, Kleinermanns K (2002) Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy. Appl Phys B 75(6-):711-16. doi:10.1007/s00340-002-1024-3 CrossRef
    11. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M-C (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412-19 CrossRef
    12. Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ, Hussain SM, Hofmann M-C (2010) Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 116(2):577-89 CrossRef
    13. Brayner R (2008) The toxicological impact of nanoparticles. Nano Today 3(1-):48-5. doi:10.1016/S1748-0132(08)70015-X CrossRef
    14. Bosques CJ, Collins BE, Meador JW III, Sarvaiya H, Murphy JL, Dellorusso G, Bulik DA, Hsu IH, Washburn N, Sipsey SF, Myette JR, Raman R, Shriver Z, Sasisekharan R, Venkataraman G (2011) Chinese hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins. Nat Biotechnol 28(11):1153-156
    15. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608-3619. doi:10.1021/jp712087m CrossRef
    16. Chau TT, Campbell JI, Galindo CM, Van Minh H, Diep TS, Nga TTT, Van Vinh Chau N et al (2007) Antimicrobial drug resistance of / Salmonella enterica serovar typhi in Asia and molecular mechanism of reduced susceptibility to the fluoroquinolones. Antimicrob Agents Chemother 51(12):4315-323 CrossRef
    17. Chaudhari VR, Haram SK, Kulshreshtha SK, Bellare JR, Hassan PA (2007) Micelle assisted morphological evolution of silver nanoparticles. Colloids Surf A 301(1-):475-80 CrossRef
    18. Croteau M-N, Misra SK, Luoma SN, Valsami-Jones E (2011) Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag. Environ Sci Technol 45(15):6600-607. doi:10.1021/es200880c CrossRef
    19. De Wild M, Berner S, Suzuki H, Ramoino L, Baratoff A, Junga TA (2003) Molecular assembly and self-assemblya: molecular nanoscience for future technologies. Ann N Y Acad Sci 1006(1):291-05 CrossRef
    20. Donaldson K, Stone V, Clouter A, Renwick L, MacNee W (2001) Ultrafine particles. Occup Environ Med 58(3):211-16 CrossRef
    21. Elechiguerra J, Burt J, Morones J, Camacho-Bragado A, Gao X, Lara H, Yacaman M (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3(1):6 CrossRef
    22. Zeng F, Hou C, Wu S, Liu X, Tong Z, Yu S (2007) Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities. Nanotechnology 18(5):055605
    23. Farkas J, Christian P, Gallego-Urrea JA, Roos N, Hassell?v M, Tollefsen KE, Thomas KV (2011) Uptake and effects of manufactured silver nanoparticles in rainbow trout ( / Oncorhynchus mykiss) gill cells. Aquat Toxicol 101(1):117-25. doi:10.1016/j.aquatox.2010.09.010 CrossRef
    24. Foldbjerg R, Dang D, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85(7):743-50. doi:10.1007/s00204-010-0545-5 CrossRef
    25. Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, von Eiff C (2004) Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials 25(24):5547-556 CrossRef
    26. Haas TA, Plow EF (1994) Integrin–ligarid interactions: a year in review. Curr Opin Cell Biol 6(5):656-62. doi:10.1016/0955-0674(94)90091-4 CrossRef
    27. Hallab NJ, Bundy KJ, O’Connor K, Clark R, Moses RL (1995) Cell adhesion to biomaterials: correlations between surface charge, surface roughness, adsorbed protein, and cell morphology. J Long Term Eff Med Implants 5(3):209-31
    28. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975-83. doi:10.1016/j.tiv.2005.06.034 CrossRef
    29. Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43(15):6046-051. doi:10.1021/es900754q CrossRef
    30. Kim SYB, Chun K, Kang W, Choo J, Gong M, Joo S (2005) Catalytic effect of laser ablated Ni nanoparticles in the oxidative addition reaction for a coupling reagent of benzylchloride and bromoacetonitrile. J Mol Catal A 226:231-34 CrossRef
    31. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23(6):1076-084 CrossRef
    32. Kim S-H, Lee H-S, Ryu D-S, Choi S-J, Lee D-S (2011) Antibacterial activity of silver-nanoparticles against / Staphylococcus aureus and / Escherichia coli. Korean J Microbiol Biotechnol 39(1):77-5
    33. Kumar A, Joshi H, Pasricha R, Mandale AB, Sastry M (2003) Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules. J Colloid Interface Sci 264(2):396-01 CrossRef
    34. Li G-Y, Osborne NN (2008) Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly(ADP-ribose)polymerase and apoptosis-inducing factor. Brain Res 1188:35-3. doi:10.1016/j.brainres.2007.10.073 CrossRef
    35. Li DG, Chen SH, Zhao SY, Hou XM, Ma HY, Yang XG (2004) Simple method for preparation of cubic Ag nanoparticles and their self-assembled films. Thin Solid Films 460(1-):78-2 CrossRef
    36. Liu S, Zhang Z, Han M (2005) Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection. Anal Chem 77(8):2595-600. doi:10.1021/ac0482864 CrossRef
    37. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1-):55-3
    38. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788-00. doi:10.1021/la9502711 CrossRef
    39. Paddle-Ledinek JE, Nasa Z, Cleland HJ (2006) Effect of different wound dressings on cell viability and proliferation. Plast Reconstr Surg 117(7S):110S-18S
    40. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium / Escherichia coli. Appl Environ Microbiol 73(6):1712-720 CrossRef
    41. Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25(5):1097-105. doi:10.1016/j.tiv.2011.03.008 CrossRef
    42. Park E-J, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24(3):872-78. doi:10.1016/j.tiv.2009.12.001 CrossRef
    43. Patel K, Kapoor S, Dave DP, Mukherjee T (2005) Synthesis of Pt, Pd, Pt/Ag and Pd/Ag nanoparticles by microwave-polyol method. J Chem Sci 117(4):311-16 CrossRef
    44. Paz-Elizur T, Krupsky M, Blumenstein S, Elinger D, Schechtman E, Livneh Z (2003) DNA repair activity for oxidative damage and risk of lung cancer. J Natl Cancer Inst 95(17):1312-319 CrossRef
    45. Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92-00. doi:10.1016/j.toxlet.2010.12.010 CrossRef
    46. Pillai ZS, Kamat PV (2003) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108(3):945-51. doi:10.1021/jp037018r CrossRef
    47. Ringer SP, Ratinac KR (2004) On the role of characterization in the design of interfaces in nanoscale materials technology. Microsc Microanal 10(03):324-35 CrossRef
    48. Salkar RA, Jeevanandam PT, Aruna S, Koltypin Y, Gedanken A (1999) The sonochemical preparation of amorphous silver nanoparticles. J Mater Chem 9(6):1333-335 CrossRef
    49. Samuel U, Guggenbichler JP (2004) Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 23:75-8 CrossRef
    50. Sanpui P, Chattopadhyay A, Ghosh SS (2011) Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces 3(2):218-28. doi:10.1021/am100840c CrossRef
    51. Schins RPF, Knaapen AM (2007) Genotoxicity of poorly soluble particles. Inhalation Toxicol 19(s1):189-98. doi:10.1080/08958370701496202 CrossRef
    52. Schrand AM, Braydich-Stolle LK, Schlager JJ, Dai L, Hussain SM (2008) Can silver nanoparticles be useful as potential biological labels? Nanotechnology 19:235104 CrossRef
    53. Sheeley DM, Merrill BM, Taylor LCE (1997) Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal α-linked galactose. Anal Biochem 247(1):102-10. doi:10.1006/abio.1997.2036 CrossRef
    54. Soroushian BLI, Belloni J, Mostafavi M (2005) Radiolysis of silver ion solutions in ethylene glycol: solvated electron and radical scavenging yields. Radiat Phys Chem 72:111-18 CrossRef
    55. Sosa IO, Noguez C, Barrera RG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107(26):6269-275. doi:10.1021/jp0274076 CrossRef
    56. Starowicz M, Stypu?a B, Bana? J (2006) Electrochemical synthesis of silver nanoparticles. Electrochem Commun 8(2):227-30 CrossRef
    57. Suber L, Sondi I, Matijevi? E, Goia DV (2005) Preparation and the mechanisms of formation of silver particles of different morphologies in homogeneous solutions. J Colloid Interface Sci 288(2):489-95 CrossRef
    58. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176-179 CrossRef
    59. Tran QH, Nguyen VQ, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4:033001-33020 CrossRef
    60. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus / Aspergillus flavus. Mater Lett 61(6):1413-418. doi:10.1016/j.matlet.2006.07.042 CrossRef
    61. Vinardell MP (2005) In vitro cytotoxicity of nanoparticles in mammalian germ-line stem cell. Toxicol Sci 88(2):285-86 CrossRef
    62. Wise JP Sr, Goodale BC, Wise SS, Craig GA, Pongan AF, Walter RB, Thompson WD, Ng A-K, Aboueissa A-M, Mitani H, Spalding MJ, Mason MD (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97(1):34-1. doi:10.1016/j.aquatox.2009.11.016 CrossRef
    63. Xie Y, Ye R, Liu H (2006) Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surf A 279(1-):175-78 CrossRef
    64. Yavuz Basterzi GE, Sarac G, Sari A, Demirkan F (2010) In vitro comparison of antimicrobial efficacy of various wound dressing materials. Wounds 22(7):165-70
    65. Zhang J-p, Chen P, Sun C-h, Hu X-j (2004) Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system. Appl Catal A 266(1):49-4 CrossRef
    66. Zhang W, Qiao X, Chen J (2008) Formation of silver nanoparticles in SDS inverse microemulsions. Mater Chem Phys 109(2-):411-16 CrossRef
  • 作者单位:Kumud Kant Awasthi (1)
    Anjali Awasthi (2)
    Narender Kumar (2)
    Partha Roy (2)
    Kamlendra Awasthi (3)
    P. J. John (1)

    1. Department of Zoology, University of Rajasthan, Jaipur, 302004, India
    2. Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
    3. Department of Physics, Malaviya National Institute of Technology, Jaipur, 302017, India
文摘
Silver nanoparticles (Ag NPs) are being used increasingly in wound dressings, catheters, and in various household products due to their antimicrobial activity. The present study reports the toxicity evaluation of synthesized and well characterized Ag NPs using Chinese hamster ovary (CHO) cells. The UV–Vis spectroscopy reveals the formation of silver nanoparticles by exhibiting the typical surface plasmon absorption maxima at 408-10?nm. Transmission electron microscopy (TEM) reveals that the average diameter of silver nanoparticles is about 5.0?±?1.0?nm and that they have spherical shape. Cell visibility and cell viability percentage show dose-dependent cellular toxicity of Ag NPs. The half maximal inhibitory concentration (IC50) for CHO cells is 68.0?±?2.65?μg/ml after 24?h Ag NPs exposure. Toxicity evaluations, including cellular morphology, mitochondrial function (MTT assay), reactive oxygen species (ROS), and DNA fragmentation assay (Ladder pattern) were assessed in unexposed CHO cells (control) and the cells exposed to Ag NPs concentrations of 15, 30, and 60?μg/ml for 24?h. The findings may assist in the designing of Ag NPs for various applications and provide insights into their toxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700