Synthesis, spectroscopic investigations and computational study of monomeric and dimeric structures of 2-methyl-4-quinolinol
详细信息    查看全文
  • 作者:Seied Ali Pourmousavi ; Ayoub Kanaani…
  • 关键词:2 ; Methyl ; 4 ; quinolinol ; DFT ; Hydrogen bonded dimer ; FT ; IR ; 1H NMR and UV spectra ; NBO analysis
  • 刊名:Research on Chemical Intermediates
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:42
  • 期:2
  • 页码:1237-1274
  • 全文大小:1,662 KB
  • 参考文献:1.R.D. Larsen, E.G. Corley, A.O. King, J.D. Carrol, P. Davis, T.R. Verhoeven, P.J. Reider, M. Labelle, J.Y. Gauthier, Y.B. Xiang, R.J. Zamboni, J. Org. Chem. 61, 3398 (1996)CrossRef
    2.Y.L. Chen, K.C. Fang, J.Y. Sheu, H.S.L. Su, C.C. Tzeng, J. Med. Chem. 44, 2374 (2001)CrossRef
    3.M.P. Maguire, K.R. Sheets, K. Mcvety, A.P. Spada, A. Zilberstein, J. Med. Chem. 37, 2129 (1994)CrossRef
    4.G. Jones, A.R. Katritzky, C.W. Ress, Comprehensive Heterocyclic Chemistry, vol. 5 (Pergamon, New York, 1996), p. 167
    5.V. Nadaraj, S.T. Selvi, Indian J. Chem. 46B, 1203 (2007)
    6.S.B. Sapkal, K.F. Shelke, B.B. Shingate, M. S. J. Korean Chem. Soc. 54, 723 (2010)CrossRef
    7.S. Yuan, K. Zhang, J. Xia, Asian J. Chem. 25, 5535 (2013)
    8.A. Nilsen, G.P. Miley, I.P. Forquer, M.W. Mather, K. Katneni, Y. Li, S. Pou, A.M. Pershing, A.M. Stickles, E. Ryan, J.X. Kelly, J.S. Doggett, K.L. White, D.J. Hinrichs, R.W. Winter, S.A. Charman, L.N. Zakharov, I. Bathurst, J.N. Burrows, A.B. Vaidya, M.K. Riscoe, J. Med. Chem. 57, 3834 (2014)CrossRef
    9.M. Conrad, L. Limpach, Ber. 20, 944 (1887)CrossRef
    10.M. Vakili, S.F. Tayyari, A. Kanaani, A.-R. Nekoei, S. Salemi, H. Miremad, A.R. Berenji, R.E. Sammelson, J. Mol. Struct. 998, 99 (2011)CrossRef
    11.A. Kanaani, D. Ajloo, H. Kiyani, M. Farahani, J. Mol. Struct. 1063, 30 (2014)CrossRef
    12.S.A. Pourmousavi, S.S. Kazemi, Monatsh. Chem. 143, 917 (2011)CrossRef
    13.A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRef
    14.C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRef
    15.B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989)CrossRef
    16.M.J. Frisch et al., Gaussian 03, Revision C.01 (Gaussian, Inc., Wallingford, 2004), p. 255
    17.H.B. Schlegel, J. Comput. Chem. 3, 214 (1982)CrossRef
    18.A.P. Scott, L. Radom, J. Phys. Chem. 100, 16503 (1996)
    19.M. Karabacak, M. Cinar, M. Kurt, Spectrochim. Acta A 74, 1197 (2009)CrossRef
    20.R. Dennington, T. Keith, Millam Gaussview Version 5 (Semichem Inc., Shawnee Mission KS, 2009)
    21.M.H. Jamroz, Vibrational Energy Distribution Analysis: VEDA 4 Program (Warsaw, Poland, 2004)
    22.K. Wolinski, J.F. Hilton, P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990)CrossRef
    23.N.M. O’Boyle, A.L. Tenderholt, K.M. Langer, J. Comput. Chem. 29, 839 (2008)CrossRef
    24.E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1 (Gaussian Inc, Pittsburgh, 2003)
    25.F.W. Biegler-König, J. Schönbohm, D. Bayles, J. Comp. Chem. 22, 545 (2001)CrossRef
    26.R.W.F. Bader, Atoms in Molecules. A Quantum Theory (Oxford University Press, New York, 1990)
    27.B. Mukhopadhyay, Tetrahedron Lett. 47, 4337 (2006)CrossRef
    28.V.K. Rajput, B. Mukhopadhyay, Tetrahedron Lett. 47, 5939 (2006)CrossRef
    29.B. Roy, B. Mukhopadhyay, Tetrahedron Lett. 48, 3783 (2007)CrossRef
    30.V.K. Rajput, B. Roy, B. Mukhopadhyay, Tetrahedron Lett. 47, 6987 (2006)CrossRef
    31.M.J. Mphahlele, A.M. El-Nahas, J. Mol. Struct. 688, 129 (2004)CrossRef
    32.F.H. Allen, Acta Crystallogr. B 58, 380 (2002)CrossRef
    33.M.J. Mphahlele, A.M. El-Nahas, J. Mol. Struct. 688, 129 (2004)CrossRef
    34.H.T. Flakus, A. Miros, P.G. Jones, J. Mol. Struct. 604, 29 (2002)CrossRef
    35.S. Gunasekaran, R. Thilak kumar, S. Ponnusamy, Spectrochim. Acta A 65, 1041 (2006)CrossRef
    36.I.L. Tocan, M.S. Woolley, J.C. Otero, J.I. Marcos, J. Mol. Struct. 470, 241 (1998)CrossRef
    37.H.T. Flakus, A. Tyl, Vib. Spectrosc. 63, 440 (2012)CrossRef
    38.H.T. Flakus, A. Tyl, A. Maslankiewicz, J. Phys. Chem. A 115, 102 (2011)
    39.S. Arjunan, S. Mohan, Spectrochim. Acta A 72, 436 (2009)CrossRef
    40.J.C. Evans, Spectrochim. Acta A 16, 428 (1960)CrossRef
    41.J. Mohan, Organic Spectroscopy-Principle and Applications, 2nd edn. (Narosa Publishing House, New Delhi, 2000)
    42.V.K. Rastogi, M.A. Palafox, K. Lang, S.K. Singhal, R.K. Soni, R. Sharma, Indian J. Pure Appl. Phys. 44, 653 (2006)
    43.N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structure (Wiley, New York, 1994)
    44.V. Balachandran, K. Parimala, Spectrochim. Acta A 102, 30 (2013)CrossRef
    45.N. Sundaraganesan, H. Saleem, S. Mohan, M. Ramalingam, V. Sethuraman, Spectrochim. Acta A 62, 740 (2005)CrossRef
    46.M. Silverstein, G.C. Basseler, C. Morill, Spectrometric Identification of Organic Compounds (Wiley, New York, 1981)
    47.G. Socrates (ed.), Infrared Characteristic Group Frequencies (Wiley, England, 1980)
    48.R.M. Silverstein, G.C. Basseler, C. Morill (eds.), Spectroscopic Identification of Organic compounds (Wiley, New York, 1981)
    49.T. Kupka, R. Wrzalik, G. Pasterna, K. Pasterny, J. Mol. Struct. 616, 17 (2002)CrossRef
    50.V. Arjunan, S. Sakiladevi, T. Rani, C.V. Mythili, S. Mohan, Spectrochim. Acta A 88, 220 (2012)CrossRef
    51.M. Karabacak, D. Karagoz, M. Kurt, Spectrochim. Acta A 72, 1076 (2009)CrossRef
    52.V. Krishnakumar, N. Surumbakuzhali, Spectrochim. Acta A 71, 1810 (2009)CrossRef
    53.G. Gunasekaran, E. Sailatha, Indian J. Pure Appl. Phys. 47, 259 (2009)
    54.M. Snehalatha, C. Ravikumar, I.J. Hubert, N. Sekar, V.S. Jayakumar, Spectrochim. Acta A 72, 654 (2009)CrossRef
    55.M. Szafran, A. Komasa, E.B. Adamska, J. Mol. Struct. (Theochem) 827, 101 (2007)CrossRef
    56.J. Choo, S. Kim, H. Joo, Y. Kwon, J. Mol. Struct. (Theochem) 587, 1 (2002)CrossRef
    57.R. Meenakshi, Mol. Simul. 36, 425 (2010)CrossRef
    58.R.S. Mulliken, J. Chem. Phys. 23, 1833 (1995)CrossRef
    59.L. Xiao-Hong, L. Xiang-Ru, Z. Xian-Zhou, Comput. Theor. Chem. 969, 27 (2011)CrossRef
    60.T. Sakamoto, Y. Kondo, D. Uchiyama, H. Yamanaka, Tetrahedron 47, 5111 (1991)CrossRef
    61.N. Subramania, N. Sundaraganesan, J. Jayabharathi, Spectrochim. Acta A 76, 259 (2010)CrossRef
    62.E. Scrocco, J. Tomasi, Adv. Quantum Chem. 11, 115 (1978)CrossRef
    63.X. Li, X. Liu, Z. Wu, H. Zhang, J. Phys. Chem. A 112, 11190 (2008)CrossRef
    64.H.-Y. Wang, L.-F. Chen, X.-L. Zhu, C. Wang, Y. Wan, H. Wu, Spectrochim. Acta A 121, 355 (2014)CrossRef
    65.M.E. Casida, K.C. Casida, D.R. Salahub, Int. J. Quantum Chem. 70, 933 (1998)CrossRef
    66.D.A. Kleinman, Phys. Rev. 126, 1977 (1962)CrossRef
    67.H. Sekino, R.J. Bartlett, J. Chem. Phys. 84, 2726 (1986)CrossRef
    68.J. Henriksson, J. Saue, P. Norman, J. Chem. Phys. 128, 24105 (2008)CrossRef
    69.S. Debrus, H. Ratajczak, J. Venturini, N. Pincon, J. Baran, J. Barycki, T. Glowiak, A. Pietraszko, Syn. Metals 127, 99 (2002)CrossRef
    70.M.A. Palafox, Int. J. Quantum Chem. 77, 661 (2000)CrossRef
    71.J. Bevan Ott, J. Boerio-goates, Calculations from Statistical Thermodynamics (Academic Press, Waltham, 2000)
    72.R. Zhang, B. Dub, G. Sun, Y. Sun, Spectrochim. Acta A 75, 1115 (2010)CrossRef
    73.J. Padmanabhan, R. Parthasarathi, V. Subramaniaan, P.K. Chattaraj, J. Phys. Chem. A 111, 1358 (2007)CrossRef
    74.R. Parthasarathi, J. Padmanabhan, V. Subramanian, B. Maiti, P.K. Chattraj, J. Phys. Chem. A 107, 10346 (2003)CrossRef
    75.R. Parthasarathi, J. Padmanabhan, V. Subramanian, B. Maiti, P.K. Chaltraj, Curr. Sci. 86, 535 (2004)
    76.R. Parthasarathi, J. Padmanabhan, V. Subramanian, U. Sarkar, B. Maiti, P.K. Chattraj, Internet Electron. J. Mol. Des. 2, 798 (2003)
    77.R.G. Parr, W. Yang, J. Am. Chem. Soc. 106, 4049 (1984)CrossRef
    78.U. Koch, P.L.A. Popelier, J. Phys. Chem. 99, 9747 (1995)CrossRef
    79.E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett. 285, 170 (1998)CrossRef
    80.D.E. Hibbs, J. Overgaard, R.O. Plitz, Org. Biomol. Chem. 1, 1191 (2003)CrossRef
    81.M.T. Caroll, C. Chang, R.F.W. Bader, Mol. Phys. 63, 387 (1988)CrossRef
    82.S.W. Paine, A. Salam, Chem. Phys. 331, 61 (2006)CrossRef
  • 作者单位:Seied Ali Pourmousavi (1) (2)
    Ayoub Kanaani (1)
    Fatemeh Ghorbani (1)
    Kobra Khorsi Damghani (1)
    Davood Ajloo (1) (2)
    Mohamad Vakili (3)

    1. School of Chemistry, Damghan University, 36716-41167, Damghan, Iran
    2. Institute of Biological Sciences, Damghan University, 36716-41167, Damghan, Iran
    3. Department of Chemistry, Ferdowsi University of Mashhad, 91775-1436, Mashhad, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Physical Chemistry
    Inorganic Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1568-5675
文摘
The present study aimed to determine an efficient and solvent-free method to synthesize 2-methyl-4-quinolinol (2MQ, also known as 4-hydroxy-2-methylquinoline) and includes spectroscopic investigations and computational studies. Molecular geometry and vibrational wavenumbers of 2MQ were investigated using the density functional (DFT/B3LYP) method with 6-311++G(d,p) and 6-311++G(2d,p) basis sets. According to calculations, the keto form of 2MQ is more stable than the annual form, and the dimeric conformation is predicted to be more stable than the monomeric conformations. A detailed analysis of the nature of the hydrogen bonding, using topological parameters such as electronic charge density, Laplacian, kinetic and potential energy density evaluated at the bond critical point, is also presented. The 1H nuclear magnetic resonance chemical shifts of the molecule were calculated by the GIAO method. The molecule orbital contributions were studied by using total (TDOS) and partial (PDOS) density of states. The UV–visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were investigated by the time-dependent DFT (TD-DFT) approach. The linear polarizability (α) and the first-order hyperpolarizability (β) values of the investigated molecule were computed using DFT quantum mechanical calculations. The results show that the 2MQ molecule may have a nonlinear optical comportment with non-zero values. The stability and charge delocalization of the molecule was studied by natural bond orbital analysis. In addition, a molecular electrostatic potential map of the title compound was studied for predicting the reactive sites. Local reactivity descriptors, such as Fukui functions, local softness and electrophilicity indices analyses, were studied to determine the reactive sites within the molecule.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700