Trypsin-dependent hemagglutination of erythrocytes of a variety of mammalian and avian species by Alkhumra hemorrhagic fever virus
详细信息    查看全文
  • 作者:Tariq A. Madani (1)
    El-Tayeb M. E. Abuelzein (2) (3)
    Huda Abu-Araki (4)
    Esam I. Azhar (3) (5)
    Hussein M. S. Al-Bar (6)
  • 刊名:Archives of Virology
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:158
  • 期:1
  • 页码:97-101
  • 全文大小:170KB
  • 参考文献:1. Qattan I, Akbar N, Afif H, Abu Azmah S, Al-Khateeb T, Zaki A et al (1996) A novel flavivirus: Makkah Region 1994-1996. Saudi Epidemiol Bull 3(1):1-. ISSN: 1319-965
    2. Madani TA (2005) Alkhumra virus infection, a new viral hemorrhagic fever in Saudi Arabia. J Infect 51(2):91-7 CrossRef
    3. Madani TA, Azhar EI, Abuelzein EME, Kao M, Al-Bar HMS, Abu-Araki H et al (2011) Alkhumra (Alkhurma) virus outbreak in Najran, Saudi Arabia: epidemiological, clinical, and laboratory characteristics. J Infect 62(1):67-6 CrossRef
    4. Madani TA, Azhar EI, Abuelzein EME, Kao M, Al-Bar HMS, Niedrig M et al (2012) Alkhumra, not Alkhurma, is the correct name of the new hemorrhagic fever flavivirus identified in Saudi Arabia. Intervirology 55:259-60 CrossRef
    5. Pletnev A, Gould E, Heinz FX, Meyers G, Thiel HJ, Bukh J, et al (2011) Flaviviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy ninth report of the international committee on viruses. Elsevier, Oxford, pp 1003-020. ISBN: 978-0-12-384684-6
    6. Carletti F, Castilletti C, Di Caro A, Capobianchi MR, Nisii C, Suter F et al (2010) Alkhurma hemorrhagic fever in travelers returning from Egypt. Emerg Infect Dis 16(12):1979-982 CrossRef
    7. Zaki AM (1997) Isolation of a flavivirus related to the tick-borne encephalitis complex from human cases in Saudi Arabia. Trans R Soc Trop Med Hyg 91:179-81 CrossRef
    8. Charrel RN, Zaki AM, Attoui H, Fakeeh M, Billoir F, Yousef AI et al (2001) Complete coding sequence of the Alkhurma virus, a tick-borne flavivirus causing severe hemorrhagic fever in humans in Saudi Arabia. Biochem Biophys Res Commun 287:455-61 CrossRef
    9. Madani TA, Kao M, Azhar EI, Abuelzein EME, Al-Bar HM, Abu-Araki H et al (2012) Successful propagation of Alkhumra (misnamed as Alkhurma) virus in C6/36 mosquito cells. Trans R Soc Trop Med Hyg 106(3):180-85 CrossRef
    10. Madani TA, Abuelzein EME, Azhar EI, Kao M, Al-Bar HM, Abu-Araki H et al (2012) Superiority of the buffy coat over serum or plasma for the detection of Alkhumra virus RNA using real time RT-PCR. Arch Virol 157(5):819-23 CrossRef
    11. Reed LJ, Muench H (1938) Simple method of estimating 50?% endpoints. Am J Hyg 27:493-97
    12. Klenk HD, Rott R, Orlich M, Blodorn J (1975) Activation of influenza A viruses by trypsin treatment. Virology 68:426-39 CrossRef
    13. Lazarowitz SG, Choppin PW (1975) Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68:440-54 CrossRef
    14. Maeda T, Ohnshi S (1980) Activation of influenza virus by acidic media causes hemolysis and fusion of erythrocytes. FEBS Lett 122:283-87 CrossRef
    15. Skehel JJ, Bayley PM, Brown EB, Martin SR, Waterfield MD, White JM et al (1982) Changes in the conformation of influenza virus hemagglutinin at the pH optimum of in the virus-mediated membrane fusion. Proc Natl Acad Sci USA 79:968-72 CrossRef
    16. Wiley DC, Skehel JJ (1987) The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 56:365-94 CrossRef
    17. Kido H, Yokogoshi Y, Sakai K, Tashior M, Kishino Y, Fukutomi A et al (1992) Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. A possible activator of the viral fusion glycoprotein. J Biol Chem 267:13573-3579
    18. Webster RG, Rott R (1987) Influenza virus A pathogenicity: the pivotal role of hemagglutinin. Cell 50(5):665-66 CrossRef
    19. Klenk HD, Rott R (1988) The molecular biology of influenza virus pathogenicity. Adv Virus Res 34:247-81 CrossRef
    20. Klenk HD, Garten W (1994) Host cell proteases controlling virus pathogenicity. Trends Microbiol 2:39-3 CrossRef
    21. Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC (1998) Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95(3):409-17 CrossRef
    22. Biddle F (1971) The unmasking of receptors for rubella virus by trypsinization of red cells. Microbios 3:255-60
    23. Quirin EP, Nelson DB, Inhorn SL (1972) Use of trypsin-modified human erythrocytes in rubella hemagglutination-inhibition testing. Appl Microbiol 24:353-57
    24. Shortridge KF, HU LY (1974) Trypsinized human group O erythrocytes as an alternative hemagglutinating agent for Japanese Encephalitis virus. Appl Microbiol 27:653-56
    25. Ponzi AN, Pugliese A, Pertusio P (1978) Rubella virus hemagglutination with human and animal erythrocytes: effect of age and trypsinization. J Clin Microbiol 7(5):442-47
    26. Mahmood MS, Siddique M, Hussain I, Khan A (2004) Trypsin-induced hemagglutination assay for the detection of infectious bronchitis virus. Pak Vet 24:54-8
    27. Clarke DH, Casals J (1958) Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses. Am J Trop Med Hyg 7:561-73
    28. Nagarkatti PS, MitziN RaoKM (1980) Development of a kit for the assay of hemagglutination inhibition antibodies to flaviviruses using formalinized goose erythrocytes. Trans R Soc Trop Med Hyg 74:22-5 CrossRef
    29. Hussein M, Mehmood MD, Ahmad A, Shabbir MZ, Yaqub T (2008) Factors affecting hemagglutination activity of avian influenza virus subtype H5N1. J Vet Anim Sci 1:31-6
    30. Morishita T, Nobusawa E, Nakajima K, Nakajima S (1996) Studies on the molecular basis for loss of the ability of recent influenza A (H1 N1) virus strains to agglutinate chicken erythrocytes. J Gen Virol 77:2499-506 CrossRef
    31. Nelson M, Phipps EJ, Watson PG, Watts JR, Zwolenski R (1973) An automated passive hemagglutination technique suitable for the detection of hepatitis B virus antigen and antibody in blood donors. J Clin Path 26:343-50 CrossRef
  • 作者单位:Tariq A. Madani (1)
    El-Tayeb M. E. Abuelzein (2) (3)
    Huda Abu-Araki (4)
    Esam I. Azhar (3) (5)
    Hussein M. S. Al-Bar (6)

    1. Department of Medicine, Faculty of Medicine, King Abdulaziz University, PO Box 80215, Jeddah, 21589, Saudi Arabia
    2. Scientific Chair of Sheikh Mohammad Hussein Alamoudi for Viral Hemorrhagic Fever, King Abdulaziz University, Jeddah, Saudi Arabia
    3. Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
    4. Laboratory Animals Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
    5. Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
    6. Department of Family and Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
  • ISSN:1432-8798
文摘
Alkhumra hemorrhagic fever virus (AHFV) is an emerging flavivirus that was discovered in 1994-1995 in Saudi Arabia. Clinical manifestations of AHFV infection include hemorrhagic fever, hepatitis, and encephalitis, with a reported mortality rate as high as 25?%. Biological characteristics of this virus have not been well defined. Agglutination of erythrocytes (hemagglutination) is a laboratory tool for studying the attachment of viruses to cellular receptors. The envelope protein contains sites for attachment to host receptors to initiate the process of infection and is thus an essential component of the virion. In the present study, we examined the ability of AHFV to agglutinate erythrocytes of 13 mammalian and avian species (human group O+, camel, cow, sheep, goat, rabbit, guinea pig, mouse, rat, chicken, duck, goose and turkey) with and without trypsin-treatment. Without trypsin treatment, AHFV failed to agglutinate erythrocytes of all examined species. Following trypsin treatment, AHFV agglutinated erythrocytes of five species, namely, goose, human group O+, rat, guinea pig, and mouse, in descending order of sensitivity. This trypsin-dependent hemagglutination test has potential for use in serological and functional studies of AHFV.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700